Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan;35(1):29-38.
doi: 10.1016/s0143-4160(03)00169-6.

Real-time analysis of phospholipase C activity during different patterns of receptor-induced Ca2+ responses in HEK293 cells

Affiliations

Real-time analysis of phospholipase C activity during different patterns of receptor-induced Ca2+ responses in HEK293 cells

Daniel Sinnecker et al. Cell Calcium. 2004 Jan.

Abstract

[Ca(2+)](i) oscillations can either depend on oscillatory inositol-1,4,5-trisphosphate (InsP(3)) formation by phospholipase C (PLC) or rely on local feedback mechanisms involving the InsP(3) receptor. To assess the PLC activity underlying carbachol-induced [Ca(2+)](i) oscillations in single HEK293 cells, we co-imaged [Ca(2+)](i) with fluorescent fusion proteins of protein kinase C (PKC) isotypes and the PH domain of PLC-delta 1 (PLC-delta 1(PH)). The translocation of PKC alpha-YFP in single cells followed two discrete patterns. Upon maximally effective agonist concentrations, a fast association and delayed dissociation (k(on)>k(off)) was the predominant pattern. The delayed dissociation has been linked to diacylglycerol formation. Upon stimulation with submaximally effective agonist concentrations as well as during regenerative [Ca(2+)](i) waves, we mainly observed short translocations with k(on) approximately equal to k(off). Translocation time courses and efficiencies of the diacylglycerol-sensing PKC epsilon-CFP and the InsP(3)/phosphatidylinositol-4,5-bisphosphate-sensing YFP-PLC-delta 1(PH) were closely correlated. Significant PLC activity was only detectable upon strong receptor stimulation, which typically failed to trigger [Ca(2+)](i) oscillations. During [Ca(2+)](i) oscillations induced by submaximal receptor stimulation, YFP-PLC-delta 1(PH) did not translocate, whereas a fluorescent PKC epsilon fusion protein has been reported to exhibit a slow, non-oscillatory accumulation at the plasma membrane. We conclude that carbachol-induced [Ca(2+)](i) oscillations in HEK293 cells develop at low levels of presumably non-oscillatory PLC activity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources