Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jan 16;996(1):117-25.
doi: 10.1016/j.brainres.2003.10.018.

Allosteric modulation of [3H]dizocilpine binding to N-methyl-D-aspartate receptor by an endogenous Na+, K+-ATPase inhibitor: dependence on receptor activation

Affiliations
Comparative Study

Allosteric modulation of [3H]dizocilpine binding to N-methyl-D-aspartate receptor by an endogenous Na+, K+-ATPase inhibitor: dependence on receptor activation

Analía Reinés et al. Brain Res. .

Abstract

An endogenous Na(+), K(+)-ATPase inhibitor, termed endobain E, has been isolated from rat brain and proved to decrease [3H]dizocilpine binding to cerebral cortex N-methyl-D-aspartate (NMDA) receptor, an effect independent of sodium pump activity. The purpose of this study was to disclose the mechanism of [3H]dizocilpine binding reduction by endobain E by performing saturation, kinetic and competitive assays. In saturation binding assays, endobain E increased K(d) without modifying B(max) value. To determine whether competitive or allosteric interaction was involved, kinetics of [3H]dizocilpine binding to cerebral cortex membranes was studied. Endobain E increased [3H]dizocilpine dissociation rate constant and induced an initial fast phase, without modifying association rate constant, indicating an allosteric interaction. In competitive [3H]dizocilpine binding assays, no additive effect was observed with endobain E plus competitive antagonists for glutamate or glycine sites (2-amino-5-phosphonopentanoic acid (AP-5) and 7-chlorokynurenic acid, respectively), indicating that coagonist site blockade interferes with endobain E effect. However, the higher glutamate and glycine concentration, the greater its effect. Endobain E binding reduction was partially additive with that induced by ketamine or Mg(2+) (receptor-associated channel blockers). Results suggest that the greater the channel activation by glutamate and glycine, the greater endobain E allosteric effect. Furthermore, as ketamine and Mg(2+) interfere with endobain E effect, this factor most likely binds to the inner surface of the NMDA associated channel.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources