Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr;286(4):H1461-70.
doi: 10.1152/ajpheart.00942.2003. Epub 2003 Dec 11.

Profiling substrate fluxes in the isolated working mouse heart using 13C-labeled substrates: focusing on the origin and fate of pyruvate and citrate carbons

Affiliations
Free article

Profiling substrate fluxes in the isolated working mouse heart using 13C-labeled substrates: focusing on the origin and fate of pyruvate and citrate carbons

Maya Khairallah et al. Am J Physiol Heart Circ Physiol. 2004 Apr.
Free article

Abstract

The availability of genetically modified mice requires the development of methods to assess heart function and metabolism in the intact beating organ. With the use of radioactive substrates and ex vivo perfusion of the mouse heart in the working mode, previous studies have documented glucose and fatty acid oxidation pathways. This study was aimed at characterizing the metabolism of other potentially important exogenous carbohydrate sources, namely, lactate and pyruvate. This was achieved by using (13)C-labeling methods. The mouse heart perfusion setup and buffer composition were optimized to reproduce conditions close to the in vivo milieu in terms of workload, cardiac functions, and substrate-hormone supply to the heart (11 mM glucose, 0.8 nM insulin, 50 microM carnitine, 1.5 mM lactate, 0.2 mM pyruvate, 5 nM epinephrine, 0.7 mM oleate, and 3% albumin). The use of three differentially (13)C-labeled carbohydrates and a (13)C-labeled long-chain fatty acid allowed the quantitative assessment of the metabolic origin and fate of tissue pyruvate as well as the relative contribution of substrates feeding acetyl-CoA (pyruvate and fatty acids) and oxaloacetate (pyruvate) for mitochondrial citrate synthesis. Beyond concurring with the notion that the mouse heart preferentially uses fatty acids for energy production (63.5 +/- 3.9%) and regulates its fuel selection according to the Randle cycle, our study reports for the first time in the mouse heart the following findings. First, exogenous lactate is the major carbohydrate contributing to pyruvate formation (42.0 +/- 2.3%). Second, lactate and pyruvate are constantly being taken up and released by the heart, supporting the concept of compartmentation of lactate and glucose metabolism. Finally, mitochondrial anaplerotic pyruvate carboxylation and citrate efflux represent 4.9 +/- 1.8 and 0.8 +/- 0.1%, respectively, of the citric acid cycle flux and are modulated by substrate supply. The described (13)C-labeling strategy combined with an experimental setup that enables continuous monitoring of physiological parameters offers a unique model to clarify the link between metabolic alterations, cardiac dysfunction, and disease development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources