Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Dec 12;93(12):1170-8.
doi: 10.1161/01.RES.0000105088.06696.17.

Modulation of thin filament activation by breakdown or isoform switching of thin filament proteins: physiological and pathological implications

Affiliations
Free article
Review

Modulation of thin filament activation by breakdown or isoform switching of thin filament proteins: physiological and pathological implications

Steven B Marston et al. Circ Res. .
Free article

Abstract

In the heart, the contractile apparatus is adapted to the specific demands of the organ for continuous rhythmic contraction. The specialized contractile properties of heart muscle are attributable to the expression of cardiac-specific isoforms of contractile proteins. This review describes the isoforms of the thin filament proteins actin and tropomyosin and the three troponin subunits found in human heart muscle, how the isoform profiles of these proteins change during development and disease, and the possible functional consequences of these changes. During development of the heart, there is a distinctive switch of isoform expression at or shortly after birth; however, during adult life, thin filament protein isoform composition seems to be stable despite protein turnover rates of 3 to 10 days. The pattern of isoforms of actin, tropomyosin, troponin I, troponin C, and troponin T is not affected by aging or heart disease (ischemia and dilated cardiomyopathy). The evidence for proteolysis of thin filament proteins in situ during ischemia and stunning is evaluated, and it is concluded that C-terminal cleavage of troponin I is a feature of irreversibly injured myocardium but may not play a role in reversible stunning.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources