Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Aug;69(3):238-49.
doi: 10.1002/bdrc.10019.

Cell-based therapies for birth defects: a role for adult stem cell plasticity?

Affiliations
Review

Cell-based therapies for birth defects: a role for adult stem cell plasticity?

Te-Chao Fang et al. Birth Defects Res C Embryo Today. 2003 Aug.

Abstract

Cell therapy can offer a reasonable approach to the treatment of specific birth defects, particularly those for which hematopoietic stem cells (HSCs) can be used to restore (even partially) the number of cells, protein levels, or enzyme activity. Relatively few clinical experiences have been published on this subject, but when a natural selective advantage exists for the cell graft, a degree of "rescue" is possible. Strategies have been developed to confer a selective advantage through genetic engineering of donor cells, and this approach may prove valuable in the treatment of birth defects, as it is in hematological malignancy. Stem cell (SC) plasticity, or transdifferentiation, may offer another route for delivery of cells to established or developing organs. A wide variety of studies support the concept that adult tissue-specific SCs can, if displaced from their normal niche to another, be reprogrammed to produce cell types appropriate to their new environment. Clinical observations reveal that persistent tissue microchimerism develops not only in blood lineages after transfusion, but also in thyroid follicular epithelium via transplacental exchange. In addition, hepatic and renal parenchyma also become chimeric following allografts or bone marrow transplantation (BMT). Experimental models indicate that a renal glomerulosclerosis phenotype can be transferred by grafting whole BM, and that a severe liver disorder in fah-/- mice can be overcome by grafting HSCs and then exerting a selection pressure. It may be possible in the future to exploit the ability of adult SCs to contribute to diverse tissues; however, our understanding of the processes involved is at a very early stage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources