Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jan 9;995(2):151-7.
doi: 10.1016/j.brainres.2003.09.012.

Zonal expression and activity of glutathione S-transferase enzymes in the mouse olfactory mucosa

Affiliations
Comparative Study

Zonal expression and activity of glutathione S-transferase enzymes in the mouse olfactory mucosa

Gwendolyn K Whitby-Logan et al. Brain Res. .

Abstract

The rodent olfactory mucosa is characterized by a mosaic of gene expression that is exhibited among various cell types. Olfactory sensitivity in these animals is conveyed through odorant receptor families that are distinctly expressed within various subsets of the olfactory neuron population. Receptor neurons that express a particular class of odorant receptors exhibit bilaterally symmetric zones, which generally define their location within the nasal cavity. Less characterized are zonal expression profiles of proteins among non-neuronal cell types of the olfactory mucosa. In this study, we survey the expression of three glutathione S-transferase (GST) isozymes (alpha, mu, and pi) in the mouse olfactory mucosa and characterize the zonal expression of the mu isozyme. Immunohistochemistry and Western blot analysis of the GST mu isozyme reveal that the lateral olfactory turbinates I, Ib, II, IIb, and III display a greater intensity of expression for GST mu, in comparison to the dorsal and septal regions of the mucosa. GST alpha and pi isozymes do not display any distinct zonal organization in olfactory tissue of the adult mouse. When the general substrate 1-chloro-2-4-dinitrobenzene (CDNB) was used to assess GST activity within the olfactory tissue, the lateral turbinate regions displayed a higher level of activity when compared to dorsal or septal regions. Analysis of GST mu expression in prenatal and early postnatal olfactory tissue also reveals a zonal expression of the isozyme. We relate the significance of these findings to metabolic topography and olfactory chemosensory function.

PubMed Disclaimer

Publication types

LinkOut - more resources