Dynamic analysis of larval locomotion in Drosophila chordotonal organ mutants
- PMID: 14673076
- PMCID: PMC307691
- DOI: 10.1073/pnas.2535546100
Dynamic analysis of larval locomotion in Drosophila chordotonal organ mutants
Abstract
Rhythmic movements, such as peristaltic contraction, are initiated by output from central pattern generator (CPG) networks in the CNS. These oscillatory networks elicit locomotion in the absence of external sensory or descending inputs, but CPG circuits produce more directed and behaviorally relevant movement via peripheral nervous system (PNS) input. Drosophila melanogaster larval locomotion results from patterned muscle contractions moving stereotypically along the body segments, but without PNS feedback, contraction of body segments is uncoordinated. We have dissected the role of a subset of mechanosensory neurons in the larval PNS, the chordotonal organs (chos), in providing sensory feedback to the locomotor CPG circuit with dias (Dynamic Image Analysis System) software. We analyzed mutants carrying cho mutations including atonal, a cho proneural gene, beethoven, a cho cilia class mutant, smetana and touch-insensitive larva B, two axonemal mutants, and 5D10, a weak cho mutant. All cho mutants have defects in gross path morphology compared to controls. These mutants exhibit increased frequency and duration of turning (decision-making) and reduced duration of linear locomotion. Furthermore, cho mutants affect locomotor parameters, including reduced average speed, direction change, and persistence. Dias analysis of peristaltic waves indicates that mutants exhibit reduced average speed, positive flow and negative flow, and increased stride period. Thus, cho sensilla are major proprioceptive components that underlie touch sensitivity, locomotion, and peristaltic contraction by providing sensory feedback to the locomotor CPG circuit in larvae.
Figures



Similar articles
-
Embryonic assembly of a central pattern generator without sensory input.Nature. 2002 Mar 14;416(6877):174-8. doi: 10.1038/416174a. Nature. 2002. PMID: 11894094
-
Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation.J Neurosci. 2006 Feb 1;26(5):1486-98. doi: 10.1523/JNEUROSCI.4749-05.2006. J Neurosci. 2006. PMID: 16452672 Free PMC article.
-
Role of sensory experience in functional development of Drosophila motor circuits.PLoS One. 2013 Apr 19;8(4):e62199. doi: 10.1371/journal.pone.0062199. Print 2013. PLoS One. 2013. PMID: 23620812 Free PMC article.
-
Development of larval motor circuits in Drosophila.Dev Growth Differ. 2012 Apr;54(3):408-19. doi: 10.1111/j.1440-169X.2012.01347.x. Dev Growth Differ. 2012. PMID: 22524610 Review.
-
Development of the embryonic and larval peripheral nervous system of Drosophila.Wiley Interdiscip Rev Dev Biol. 2014 May-Jun;3(3):193-210. doi: 10.1002/wdev.135. Epub 2014 Apr 16. Wiley Interdiscip Rev Dev Biol. 2014. PMID: 24896657 Free PMC article. Review.
Cited by
-
Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of Drosophila larvae.Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13612-7. doi: 10.1073/pnas.1312477110. Epub 2013 Jul 29. Proc Natl Acad Sci U S A. 2013. PMID: 23898199 Free PMC article.
-
Linking neural circuits to the mechanics of animal behavior in Drosophila larval locomotion.Front Neural Circuits. 2023 Aug 17;17:1175899. doi: 10.3389/fncir.2023.1175899. eCollection 2023. Front Neural Circuits. 2023. PMID: 37711343 Free PMC article. Review.
-
Dihydroartemisinin induces tumor suppression in the Drosophila brain tumor with functional recovery and a rescue in lethality.Sci Rep. 2025 Aug 16;15(1):30031. doi: 10.1038/s41598-025-15969-8. Sci Rep. 2025. PMID: 40819000 Free PMC article.
-
Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7243-8. doi: 10.1073/pnas.1606537113. Epub 2016 Jun 13. Proc Natl Acad Sci U S A. 2016. PMID: 27298354 Free PMC article.
-
Distinctive features of the central synaptic organization of Drosophila larval proprioceptors.Front Neural Circuits. 2023 Jul 26;17:1223334. doi: 10.3389/fncir.2023.1223334. eCollection 2023. Front Neural Circuits. 2023. PMID: 37564629 Free PMC article.
References
-
- Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R. & Lehman, S. (2000) Science 288, 100-106. - PubMed
-
- Pearson, K. G. (1995) Curr. Opin. Neurobiol. 5, 768-791. - PubMed
-
- Marder, E. & Bucher, D. (2001) Curr. Biol. 11, R986-R996. - PubMed
-
- Marder, E. (2002) Nature 416, 131-132. - PubMed
-
- Suster, M. L. & Bate, M. (2002) Nature 416, 174-178. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases