Polariton lasing vs. photon lasing in a semiconductor microcavity
- PMID: 14673089
- PMCID: PMC307565
- DOI: 10.1073/pnas.2634328100
Polariton lasing vs. photon lasing in a semiconductor microcavity
Abstract
Nearly one decade after the first observation of Bose-Einstein condensation in atom vapors and realization of matter-wave (atom) lasers, similar concepts have been demonstrated recently for polaritons: half-matter, half-light quasiparticles in semiconductor microcavities. The half-light nature of polaritons makes polariton lasers promising as a new source of coherent and nonclassical light with extremely low threshold energy. The half-matter nature makes polariton lasers a unique test bed for many-body theories and cavity quantum electrodynamics. In this article, we present a series of experimental studies of a polariton laser, exploring its properties as a relatively dense degenerate Bose gas and comparing it to a photon laser achieved in the same structure. The polaritons have an effective mass that is twice the cavity photon effective mass, yet seven orders of magnitude less than the hydrogen atom mass; hence, they can potentially condense at temperatures seven orders of magnitude higher than those required for atom Bose-Einstein condensations. Accompanying the phase transition, a polariton laser emits coherent light but at a threshold carrier density two orders of magnitude lower than that needed for a normal photon laser in a same structure. It also is shown that, beyond threshold, the polariton population splits to a thermal equilibrium Bose-Einstein distribution at in-plane wave number k parallel > 0 and a nonequilibrium condensate at k parallel approximately 0, with a chemical potential approaching to zero. The spatial distributions and polarization characteristics of polaritons also are discussed as unique signatures of a polariton laser.
Figures







Similar articles
-
An exciton-polariton laser based on biologically produced fluorescent protein.Sci Adv. 2016 Aug 19;2(8):e1600666. doi: 10.1126/sciadv.1600666. eCollection 2016 Aug. Sci Adv. 2016. PMID: 27551686 Free PMC article.
-
A GaAs polariton light-emitting diode operating near room temperature.Nature. 2008 May 15;453(7193):372-5. doi: 10.1038/nature06979. Nature. 2008. PMID: 18480820
-
Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap.Sci Rep. 2017 Jul 17;7(1):5542. doi: 10.1038/s41598-017-06125-y. Sci Rep. 2017. PMID: 28717162 Free PMC article.
-
Exciton-Polaritons and Their Bose-Einstein Condensates in Organic Semiconductor Microcavities.Adv Mater. 2022 Jan;34(4):e2106095. doi: 10.1002/adma.202106095. Epub 2021 Dec 8. Adv Mater. 2022. PMID: 34881466 Review.
-
Recent Progress of Strong Exciton-Photon Coupling in Lead Halide Perovskites.Adv Mater. 2019 Nov;31(45):e1804894. doi: 10.1002/adma.201804894. Epub 2018 Nov 6. Adv Mater. 2019. PMID: 30398690 Review.
Cited by
-
An exciton-polariton laser based on biologically produced fluorescent protein.Sci Adv. 2016 Aug 19;2(8):e1600666. doi: 10.1126/sciadv.1600666. eCollection 2016 Aug. Sci Adv. 2016. PMID: 27551686 Free PMC article.
-
Dual-Color Lasing Lines from EMPs in Diluted Magnetic Semiconductor CdS:NiI Structure.Research (Wash D C). 2019 Nov 5;2019:6956937. doi: 10.34133/2019/6956937. eCollection 2019. Research (Wash D C). 2019. PMID: 31912043 Free PMC article.
-
Polaritonic Chemistry from First Principles via Embedding Radiation Reaction.J Phys Chem Lett. 2022 Aug 4;13(30):6905-6911. doi: 10.1021/acs.jpclett.2c01169. Epub 2022 Jul 22. J Phys Chem Lett. 2022. PMID: 35866694 Free PMC article.
-
Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers.Nat Commun. 2017 Sep 14;8(1):543. doi: 10.1038/s41467-017-00743-w. Nat Commun. 2017. PMID: 28912420 Free PMC article.
-
Perovskite topological exciton-polariton disclination laser at room temperature.Nat Commun. 2025 Jul 1;16(1):6002. doi: 10.1038/s41467-025-61120-6. Nat Commun. 2025. PMID: 40595683 Free PMC article.
References
-
- Moskalenko, S. A. (1962) Fiz. Tverd. Tela 4, 276–284.
-
- Blatt, J., Brandt, W. & Boer, K. (1962) Phys. Rev. 126, 1691–1692.
-
- Keldysh, L. & Kozlov, A. N. (1968) Sov. Phys. JETP 27, 521–528.
-
- Lin, J. L. & Wolfe, J. P. (1993) Phys. Rev. Lett. 71, 1222–1225. - PubMed
-
- Mysyrowicz, A., Benson, E. & Fortin, E. (1996) Phys. Rev. Lett. 77, 896–899. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources