Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins
- PMID: 14673145
- PMCID: PMC303361
- DOI: 10.1128/MCB.24.1.84-95.2004
Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins
Abstract
Modification of proteins by ubiquitin (Ub)-like proteins (UBLs) plays an important role in many cellular processes, including cell cycle progression, nuclear transport, and autophagy. Protein modification occurs via UBL-conjugating and -deconjugating enzymes, which presumably exert a regulatory function by determining the conjugation status of the substrate proteins. To target and identify UBL-modifying enzymes, we produced Nedd8, ISG15, and SUMO-1 in Escherichia coli and equipped them with a C-terminal electrophilic trap (vinyl sulfone [VS]) via an intein-based method. These C-terminally modified UBL probes reacted with purified UBL-activating (E1), -conjugating (E2), and -deconjugating enzymes in a covalent fashion. Modified UBLs were radioiodinated and incubated with cell lysates prepared from mouse cell lines and tissues to allow visualization of polypeptides reactive with individual UBL probes. The cell type- and tissue-specific labeling patterns observed for the UBL probes reflect distinct expression profiles of active enzymes, indicating tissue-specific functions of UBLs. We identify Ub C-terminal hydrolase L1 (UCH-L1) and DEN1/NEDP1/SENP8, in addition to UCH-L3, as proteases with specificity for Nedd8. The Ub-specific protease isopeptidase T/USP5 is shown to react with ISG15-VS. Furthermore, we demonstrate that the desumoylation enzyme SuPr-1 can be modified by SUMO-1-VS, a modification that is dependent on the SuPr-1 active-site cysteine. The UBL probes described here will be valuable tools for the further characterization of the enzymatic pathways that govern modification by UBLs.
Figures








Similar articles
-
Profiling DUBs and Ubl-specific proteases with activity-based probes.Methods Enzymol. 2019;618:357-387. doi: 10.1016/bs.mie.2018.12.037. Epub 2019 Feb 14. Methods Enzymol. 2019. PMID: 30850060 Free PMC article.
-
Identification and characterization of DEN1, a deneddylase of the ULP family.J Biol Chem. 2003 Aug 1;278(31):28892-900. doi: 10.1074/jbc.M302890200. Epub 2003 May 19. J Biol Chem. 2003. PMID: 12759362
-
Detecting Active Deconjugating Enzymes with Genetically Encoded Activity-Based Ubiquitin and Ubiquitin-like Protein Probes.Anal Chem. 2023 Jan 17;95(2):846-853. doi: 10.1021/acs.analchem.2c03270. Epub 2023 Jan 3. Anal Chem. 2023. PMID: 36595388
-
Chemical Tools for Probing the Ub/Ubl Conjugation Cascades.Chembiochem. 2025 Jan 2;26(1):e202400659. doi: 10.1002/cbic.202400659. Epub 2024 Nov 6. Chembiochem. 2025. PMID: 39313481 Free PMC article. Review.
-
Role of ubiquitin-like proteins in transcriptional regulation.Ernst Schering Res Found Workshop. 2006;(57):173-92. doi: 10.1007/3-540-37633-x_10. Ernst Schering Res Found Workshop. 2006. PMID: 16568955 Review.
Cited by
-
Development of ADPribosyl Ubiquitin Analogues to Study Enzymes Involved in Legionella Infection.Chemistry. 2021 Feb 1;27(7):2506-2512. doi: 10.1002/chem.202004590. Epub 2020 Dec 23. Chemistry. 2021. PMID: 33075184 Free PMC article.
-
It takes two to tango: Ubiquitin and SUMO in the DNA damage response.Front Genet. 2013 Jun 11;4:106. doi: 10.3389/fgene.2013.00106. eCollection 2013. Front Genet. 2013. PMID: 23781231 Free PMC article.
-
Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation.J Biol Chem. 2015 Oct 16;290(42):25199-211. doi: 10.1074/jbc.M115.671446. Epub 2015 Aug 10. J Biol Chem. 2015. PMID: 26260794 Free PMC article.
-
Recognition of Lys48-Linked Di-ubiquitin and Deubiquitinating Activities of the SARS Coronavirus Papain-like Protease.Mol Cell. 2016 May 19;62(4):572-85. doi: 10.1016/j.molcel.2016.04.016. Mol Cell. 2016. PMID: 27203180 Free PMC article.
-
Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses.Front Microbiol. 2019 Nov 14;10:2647. doi: 10.3389/fmicb.2019.02647. eCollection 2019. Front Microbiol. 2019. PMID: 31798565 Free PMC article. Review.
References
-
- Bayer, P., A. Arndt, S. Metzger, R. Mahajan, F. Melchior, R. Jaenicke, and J. Becker. 1998. Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 280:275-286. - PubMed
-
- Bernier-Villamor, V., D. A. Sampson, M. J. Matunis, and C. D. Lima. 2002. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108:345-356. - PubMed
-
- Best, J. L., S. Ganiatsas, S. Agarwal, A. Changou, P. Salomoni, O. Shirihai, P. B. Meluh, P. P. Pandolfi, and L. I. Zon. 2002. SUMO-1 protease-1 regulates gene transcription through PML. Mol. Cell 10:843-855. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous