The oxidized deoxynucleoside triphosphate pool is a significant contributor to genetic instability in mismatch repair-deficient cells
- PMID: 14673178
- PMCID: PMC303369
- DOI: 10.1128/MCB.24.1.465-474.2004
The oxidized deoxynucleoside triphosphate pool is a significant contributor to genetic instability in mismatch repair-deficient cells
Abstract
Oxidation is a common form of DNA damage to which purines are particularly susceptible. We previously reported that oxidized dGTP is potentially an important source of DNA 8-oxodGMP in mammalian cells and that the incorporated lesions are removed by DNA mismatch repair (MMR). MMR deficiency is associated with a mutator phenotype and widespread microsatellite instability (MSI). Here, we identify oxidized deoxynucleoside triphosphates (dNTPs) as an important cofactor in this genetic instability. The high spontaneous hprt mutation rate of MMR-defective msh2(-/-) mouse embryonic fibroblasts was attenuated by expression of the hMTH1 protein, which degrades oxidized purine dNTPs. A high level of hMTH1 abolished their mutator phenotype and restored the hprt mutation rate to normal. Molecular analysis of hprt mutants showed that the presence of hMTH1 reduced the incidence of mutations in all classes, including frameshifts, and also implicated incorporated 2-oxodAMP in the mutator phenotype. In hMSH6-deficient DLD-1 human colorectal carcinoma cells, overexpression of hMTH1 markedly attenuated the spontaneous mutation rate and reduced MSI. It also reduced the incidence of -G and -A frameshifts in the hMLH1-defective DU145 human prostatic cancer cell line. Our findings indicate that incorporation of oxidized purines from the dNTP pool may contribute significantly to the extreme genetic instability of MMR-defective human tumors.
Figures





Similar articles
-
The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool.Curr Biol. 2002 Jun 4;12(11):912-8. doi: 10.1016/s0960-9822(02)00863-1. Curr Biol. 2002. PMID: 12062055
-
Microsatellite instability markers for identifying early-onset colorectal cancers caused by germ-line mutations in DNA mismatch repair genes.Clin Cancer Res. 2007 May 15;13(10):2865-9. doi: 10.1158/1078-0432.CCR-06-2174. Clin Cancer Res. 2007. PMID: 17504984
-
Oxidized purine nucleotides, genome instability and neurodegeneration.Mutat Res. 2010 Nov 28;703(1):59-65. doi: 10.1016/j.mrgentox.2010.06.008. Epub 2010 Jun 19. Mutat Res. 2010. PMID: 20601098
-
Microsatellite instability and DNA mismatch repair deficiency testing in hereditary and sporadic gastrointestinal cancers.Clin Lab Med. 2005 Mar;25(1):179-96. doi: 10.1016/j.cll.2004.12.001. Clin Lab Med. 2005. PMID: 15749237 Review.
-
Oxidized deoxyribonucleotides, mutagenesis, and cancer.FASEB J. 2017 Jan;31(1):11-13. doi: 10.1096/fj.201601100. Epub 2016 Oct 11. FASEB J. 2017. PMID: 27729413 Review. No abstract available.
Cited by
-
Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities.Mutat Res. 2013 Mar-Apr;743-744:53-66. doi: 10.1016/j.mrfmmm.2012.12.008. Epub 2013 Feb 4. Mutat Res. 2013. PMID: 23391514 Free PMC article. Review.
-
The polymerase eta translesion synthesis DNA polymerase acts independently of the mismatch repair system to limit mutagenesis caused by 7,8-dihydro-8-oxoguanine in yeast.Mol Cell Biol. 2009 Oct;29(19):5316-26. doi: 10.1128/MCB.00422-09. Epub 2009 Jul 27. Mol Cell Biol. 2009. PMID: 19635811 Free PMC article.
-
Postreplicative mismatch repair.Cold Spring Harb Perspect Biol. 2013 Apr 1;5(4):a012633. doi: 10.1101/cshperspect.a012633. Cold Spring Harb Perspect Biol. 2013. PMID: 23545421 Free PMC article. Review.
-
Influence of oxidized purine processing on strand directionality of mismatch repair.J Biol Chem. 2015 Apr 17;290(16):9986-99. doi: 10.1074/jbc.M114.629907. Epub 2015 Feb 18. J Biol Chem. 2015. PMID: 25694431 Free PMC article.
-
Spontaneous and photosensitization-induced mutations in primary mouse cells transitioning through senescence and immortalization.J Biol Chem. 2020 Jul 17;295(29):9974-9985. doi: 10.1074/jbc.RA120.014465. Epub 2020 Jun 2. J Biol Chem. 2020. PMID: 32487750 Free PMC article.
References
-
- Aaltonen, L. A., P. Peltomaki, F. S. Leach, P. Sistonen, L. Pylkkanen, J.-P. Mecklin, H. Jarvinen, S. M. Powell, J. Jen, S. R. Hamilton, G. M. Petersen, K. W. Kinzler, B. Vogelstein, and A. de la Chapelle. 1993. Clues to the pathogenesis of familial colorectal cancer. Science 260:812-816. - PubMed
-
- Akiyama, M., T. Horiuchi, and M. Sekiguchi. 1987. Molecular cloning and nucleotide sequence of the mutT mutator of Escherichia coli that causes A:T to C:G transversion. Mol. Gen. Genet. 206:9-16. - PubMed
-
- Andrew, S. E., A. H. Reitmair, J. Fox, L. Hsiao, A. Francis, M. McKinnon, T. W. Mak, and F. R. Jirik. 1997. Base transitions dominate the mutational spectrum of a transgenic reporter gene in MSH2 deficient mice. Oncogene 15:123-129. - PubMed
-
- Bhattacharyya, N., A. Ganesh, G. Phear, B. Richards, A. Skandalis, and M. Meuth. 1995. Molecular analysis of mutations in mutator colorectal carcinoma cell lines. Hum. Mol. Genet. 4:2057-2064. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous