Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Dec 23;42(50):14957-67.
doi: 10.1021/bi0351312.

Differential modes of recognition in N peptide-boxB complexes

Affiliations
Comparative Study

Differential modes of recognition in N peptide-boxB complexes

Ryan J Austin et al. Biochemistry. .

Abstract

N proteins from bacteriophages lambda, P22, and phi21 modulate transcription elongation by binding nascent "boxB" mRNA hairpins. This RNA recognition is mediated by N-terminal arginine-rich peptide sequences capable of interacting with their cognate boxB RNA targets. Here, we have analyzed the affinity and specificity of the peptide-RNA interactions that modulate this transcriptional switch. To do this, we constructed a series of peptides based on the wild-type lambda, P22, and phi21 N protein binding domains ranging from 11 to 22 residues and analyzed their interactions with the leftward and rightward boxB RNA hairpin targets for all three phage. Binding constant (K(d)) values were determined using RNA hairpins labeled with 2-aminopurine (2AP) and monitoring the fluorescence change as peptide was added. K(d)'s demonstrate that lambda and P22 N peptides bind to their cognate boxB targets with high specificity and show equal affinities for their leftward and rightward hairpins. Surprisingly, phi21 shows very little specificity for its cognate targets. Lambda and P22 N peptides exhibit differential modes of recognition with specificity conferred by their amino- and carboxy-terminal modules, respectively. We have generated a reciprocal matrix of substituted peptides to examine the contributions of individual residues to specificity. Amino acid coupling analysis supports a binding model where the Arg8 residue of lambda peptide acts as a conformational hot spot, anchoring the induced loop fold of its boxB hairpin target.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources