Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan 15;117(Pt 2):243-55.
doi: 10.1242/jcs.00853.

Rac2D57N, a dominant inhibitory Rac2 mutant that inhibits p38 kinase signaling and prevents surface ruffling in bone-marrow-derived macrophages

Affiliations

Rac2D57N, a dominant inhibitory Rac2 mutant that inhibits p38 kinase signaling and prevents surface ruffling in bone-marrow-derived macrophages

Amy N Abell et al. J Cell Sci. .

Abstract

Rac2 is a Rho GTPase that is expressed in cells of hematopoietic origin, including neutrophils and macrophages. We recently described an immunodeficient patient with severe, recurrent bacterial infections that had a point mutation in one allele of the Rac2 gene, resulting in the substitution of aspartate 57 with asparagine. To ascertain further the effects of Rac2D57N in leukocytes, Rac2D57N was expressed in primary murine bone-marrow-derived macrophages (cells that we show express approximately equal amounts of Rac1 and Rac2). Rac2D57N expression in macrophages inhibited membrane ruffling. Rac2D57N expression inhibited the formation of macropinosomes, demonstrating a functional effect of the loss of surface membrane dynamics. Surprisingly, Rac2D57N induced an elongated, spread morphology but did not affect microtubule networks. Rac2D57N also inhibited lipopolysaccharide-stimulated p38 kinase activation. Examination of guanine nucleotide binding to recombinant Rac2D57N revealed reduced dissociation of GDP and association of GTP. Coimmunoprecipitation studies of Rac2D57N with RhoGDI alpha and Tiam1 demonstrated increased binding of Rac2D57N to these upstream regulators of Rac signaling relative to the wild type. Enhanced binding of Rac2D57N to its upstream regulators would inhibit Rac-dependent effects on actin cytoskeletal dynamics and p38 kinase signaling.

PubMed Disclaimer

Publication types

MeSH terms

Substances