Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jan;16(1):32-42.
doi: 10.1097/00008506-200401000-00008.

Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials

Affiliations
Review

Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials

Michelle L Lotto et al. J Neurosurg Anesthesiol. 2004 Jan.

Abstract

Motor evoked potentials (MEPs) have shown promise as a valuable tool for monitoring intraoperative motor tract function and reducing postoperative plegia. MEP monitoring has been reported to contribute to deficit prevention during resection of tumors adjacent to motor structures in the cerebral cortex and spine, and in detecting spinal ischemia during thoracic aortic reconstruction. Many commonly used anesthetic agents have long been known to depress MEP responses and reduce MEP specificity for motor injury detection. Although new stimulation techniques have broadened the spectrum of anesthetics that can be used during MEP monitoring, certain agents continue to have dose-dependent effects on MEP reliability. Understanding the effects of anesthetic agents and physiologic alterations on MEPs is imperative to increasing the acceptance and application of this technique in the prevention of intraoperative motor tract injury. This review is intended as an overview of the effects of anesthetics and physiology on the reproducibility of intraoperative myogenic MEP responses, rather than an analysis of the sensitivity and specificity of this monitoring method in the prevention of motor injury.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources