Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Dec 8:115 Suppl 8A:87S-92S.
doi: 10.1016/j.amjmed.2003.09.014.

Thiazolidinedione regulation of smooth muscle cell proliferation

Affiliations
Review

Thiazolidinedione regulation of smooth muscle cell proliferation

Dennis Bruemmer et al. Am J Med. .

Abstract

Vascular smooth muscle cells (VSMCs) in the media of adult arteries are normally quiescent, proliferate at low frequency, and are arrested in the G(0)/G(1) phase of the cell cycle. Proliferation of VSMCs occurs in response to arterial injury and plays a crucial role in the atherosclerotic process and in the pathogenesis of restenosis. Patients with type 2 diabetes mellitus are at increased risk for postangioplasty restenosis, which results from excessive intimal hyperplasia. Insulin sensitizers of the thiazolidinedione (TZD) class inhibit growth of VSMCs by attenuating the activity of important cell-cycle regulators. The TZDs inhibit progression from G(1) to S phase in the cell cycle by blocking growth factor-induced phosphorylation of retinoblastoma tumor suppressor protein (Rb). In animal models of restenosis, TZDs inhibit intimal hyperplasia after mechanical injury in both insulin-sensitive and insulin-resistant vessels. Preliminary clinical studies using troglitazone demonstrate less intimal hyperplasia with this TZD after implantation of coronary stents in individuals with type 2 diabetes. Further large trials are needed to confirm that treatment with a TZD can protect against postangioplasty restenosis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources