Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Mar 15;47(4):370-415.
doi: 10.1080/0014013032000157940.

Ergonomics and biology of spinal rotation

Affiliations
Review

Ergonomics and biology of spinal rotation

Shrawan Kumar. Ergonomics. .

Abstract

Spinal rotation, though being a very common motion of the body, is poorly understood. Furthermore, this motion and the extent of its development is unique to the human. Beyond the extent of its need in common activities, spinal rotation is a destabilizating motion for an inherently unstable structure. Spinal rotation has been argued to be an essential feature for an efficient bipedal gait. Also, it provides leverage to the upper extremities in delivering a forceful impact. An artificial restriction/elimination of spinal rotation resulted in significantly shorter stride length, slower walking velocity, and higher energy consumption in walking (p < 0.05). Spinal rotation also decreases the amount of force the spinal muscles can generate (to 25% of spinal extension). However, its extensive employment in industrial activities has been associated with 60.4% of back injuries. It is further stated that the amount of scientific information currently available is inadequate to biomechanically model the spinal response in a working environment. For example, when the spine is pre-rotated, a further rotation in the direction of pre-rotation decreases the force production significantly (p < 0.01) and increases the EMG activity significantly (p < 0.01) but the pattern changes with effort in the opposite direction. This and other properties (described in the paper) render biomechanical models inadequate. Muscle activation pattern and neuromotor behaviour of spinal muscles in flexion/extension and rotation of the spine are significantly different from each other (p < 0.01). The localized fatigue in different spinal muscles in the same contraction is significantly different and has been called differential fatigue. Finally, the trunk rotation, being pivotal for bipedal locomotion has brought many back problems to the human race.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources