Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan 8;94(1):101-14.
doi: 10.1016/j.jconrel.2003.09.007.

Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment

Affiliations

Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment

Theresa A Holland et al. J Control Release. .

Abstract

This research demonstrates that controlled material degradation and transforming growth factor-beta1 (TGF-beta1) release can be achieved by encapsulation of TGF-beta1-loaded gelatin microparticles within the biodegradable polymer oligo(poly(ethylene glycol) fumarate) (OPF), so that these microparticles function as both a digestible porogen and a delivery vehicle. Release studies performed with non-encapsulated microparticles confirmed that at normal physiological pH, TGF-beta1 complexes with acidic gelatin, resulting in slow release rates. At pH 4.0, this complexation no longer persists, and TGF-beta1 release is enhanced. However, by encapsulating TGF-beta1-loaded microparticles in a network of OPF, release at either pH can be diffusionally controlled. For instance, after 28 days of incubation at pH 4.0, final cumulative release from non-encapsulated microparticles crosslinked in 10 and 40 mM glutaraldehyde (GA) was 75.4+/-1.6% and 76.6+/-1.1%, respectively. However, when either microparticle formulation was encapsulated in an OPF hydrogel (noted as OPF-10 mM and OPF-40 mM, respectively), these values were reduced to 44.7+/-14.6% and 47.4+/-4.7%. More interestingly, release studies, in conditions that model the expected collagenase concentration of injured cartilage, demonstrated that by altering the microparticle crosslinking extent and loading within OPF hydrogels, TGF-beta1 release, composite swelling, and polymer loss could be systematically altered. Composites encapsulating less crosslinked microparticles (OPF-10 mM) exhibited 100% release after only 18 days and were completely degraded by day 24 in collagenase-containing phosphate-buffered saline (PBS). Hydrogels encapsulating 40 mM GA microparticles did not exhibit 100% release or polymer loss until day 28. Hydrogels with no microparticle component demonstrated only 79.3+/-9.2% release and 89.2+/-3.4% polymer loss after 28 days in enzyme-containing PBS. Accordingly, these studies confirm that the rate of TGF-beta1 release and material degradation can be controlled by altering key parameters of these novel, in situ crosslinkable biomaterials, so that TGF-beta1 release and scaffold degradation may be tailored to optimize cartilage repair.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources