Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;11(3):321-30.
doi: 10.1038/sj.cdd.4401375.

Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells

Affiliations

Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells

K Vanoverberghe et al. Cell Death Differ. 2004 Mar.

Abstract

Neuroendocrine (NE) differentiation is a hallmark of advanced, androgen-independent prostate cancer, for which there is no successful therapy. NE tumor cells are nonproliferating and escape apoptotic cell death; therefore, an understanding of the apoptotic status of the NE phenotype is imperative for the development of new therapies for prostate cancer. Here, we report for the first time on alterations in intracellular Ca(2+) homeostasis, which is a key factor in apoptosis, caused by NE differentiation of androgen-dependent prostate cancer epithelial cells. NE-differentiating regimens, either cAMP elevation or androgen deprivation, resulted in a reduced endoplasmic reticulum Ca(2+)-store content due to both SERCA 2b Ca(2+) ATPase and luminal Ca(2+) binding/storage chaperone calreticulin underexpression, and to a downregulated store-operated Ca(2+) current. NE-differentiated cells showed enhanced resistance to thapsigargin- and TNF-alpha-induced apoptosis, unrelated to antiapoptotic Bcl-2 protein overexpression. Our results suggest that targeting the key players determining Ca(2+) homeostasis in an attempt to enhance the proapoptotic potential of malignant cells may prove to be a useful strategy in the treatment of advanced prostate cancer.

PubMed Disclaimer

Publication types

MeSH terms