Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jan;255(1):1-12.
doi: 10.1046/j.0954-6820.2003.01258.x.

Preventing osteoporotic fractures with antiresorptive therapy: implications of microarchitectural changes

Affiliations
Free article
Review

Preventing osteoporotic fractures with antiresorptive therapy: implications of microarchitectural changes

S Boonen et al. J Intern Med. 2004 Jan.
Free article

Abstract

Prospective studies have demonstrated that low bone mass correlates well with increased risk of osteoporotic fractures at various skeletal sites. Trials have likewise confirmed that enhancing bone mass with antiresorptive therapy reduces fracture incidence in individuals at risk. However, correlation of bone mineral density (BMD) increases with therapeutic risk reduction has proved less consistent than correlation of BMD decreases with greater fracture risk in the untreated. Indeed, various analyses have indicated that - even during treatment with potent bisphosphonates like alendronate and risedronate - BMD changes from baseline account for <30% of the reduction in vertebral fractures in treated women. It is clearly, therefore, that factors other than BMD are involved in the reduction of fracture risk achieved by antiresorptive therapies. According to recent micro-computed tomography imaging and other studies, antiresorptive therapy can help rebuild the microarchitecture of bone as well as strengthen the materials that go into it. When treating individuals with osteoporosis, these microarchitectural changes contribute to the reduction of fracture risk achieved by antiresorptive therapies.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources