Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan;24(1):75-83.
doi: 10.1097/01.WCB.0000095803.98378.D8.

Molecular profile of vascular ion channels after experimental subarachnoid hemorrhage

Affiliations

Molecular profile of vascular ion channels after experimental subarachnoid hemorrhage

Yasuo Aihara et al. J Cereb Blood Flow Metab. 2004 Jan.

Abstract

Cerebral vasospasm is a transient, delayed constriction of cerebral arteries that occurs after subarachnoid hemorrhage (SAH). Smooth muscle cells show impaired relaxation after SAH, which may be caused by a defect in the ionic mechanisms regulating smooth muscle membrane potential and Ca(2+) permeability. We tested this hypothesis by examining changes in expression of mRNA and protein for ion channels in the basilar arteries of dogs after SAH using quantitative real-time polymerase chain reaction (PCR) and western blotting. SAH was associated with a significant reduction in basilar artery diameter to 41 +/- 8% of pre-SAH diameter (P < 0.001) after 7 days. There was significant downregulation of the voltage-gated K(+) channel K(v) 2.2 (65% reduction in mRNA, P < 0.001; 49% reduction in protein, P < 0.05) and the beta1 subunit of the large-conductance, Ca(2+) - activated K(+) (BK) channel (53% reduction in mRNA, P < 0.02). There was no change in BK beta1 subunit protein. Changes in mRNA levels of K(v) 2.2 and the BK-beta1 subunit correlated with the degree of vasospasm (r(2) = 0.490 and 0.529 respectively, P < 0.05). The inwardly rectifying K(+) (K(ir)) channel K(ir) 2.1 was upregulated (234% increase in mRNA, P < 0.001; 350% increase in protein, P < 0.001). There was no significant change in mRNA expression of L- type Ca(2+) channels and the BK-alpha subunit. These data suggest that K(+) channel dysfunction may contribute to the pathogenesis of cerebral vasospasm.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources