Biological and ultrastructural effects of the anti-microtubule agent taxol against Trypanosoma cruzi
- PMID: 14690177
Biological and ultrastructural effects of the anti-microtubule agent taxol against Trypanosoma cruzi
Abstract
Microtubules play fundamental roles in eukaryotic cells and have been investigated as target for drugs. Several studies showed the potential use of anti-microtubule agents against pathogenic protozoa. Taxol has been intensively studied in Leishmania spp. and microtubules have been considered as a promising antileishmanial drug target. It has been also shown that taxol interferes with the proliferation of Trypanosoma cruzi, leading to morphological alterations and interruption of nuclear division and cytokinesis. In the present work we show that T. cruzi bloodstream trypomastigotes were much more susceptible than epimastigotes, and in both forms taxol caused severe ultrastructural damage, especially associated to changes in the shape of the parasites. In trypomastigotes, different degrees of body contortion along the longitudinal axis and a marked dilatation of the flagellar pocket were detected. Treated epimastigotes presented a decrease in the electron density of the mitochondrial matrix, absence of mitochondrial cristae and an increase in the number of lipid droplets. Bizarre multi-flagellar epimastigotes were also detected, suggesting an interruption of the cytokinesis. Taxol caused no noticeable ultrastructural alterations on sub-pellicular and flagellar microtubules of both evolutive forms of T. cruzi. As already described in the literature, such structures in trypanosomatids are very resistant to microtubule disrupters when compared to those in mammalian cells. Taxol prevented the endocytosis of albumin-gold complexes by epimastigotes, and this result could be associated to the loss of the dynamic stability of the microtubules of the cytostome.
Publication types
MeSH terms
Substances
LinkOut - more resources
Research Materials
Miscellaneous