Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;35(3):287-94.

Biological and ultrastructural effects of the anti-microtubule agent taxol against Trypanosoma cruzi

Affiliations
  • PMID: 14690177

Biological and ultrastructural effects of the anti-microtubule agent taxol against Trypanosoma cruzi

A P Dantas et al. J Submicrosc Cytol Pathol. 2003 Jul.

Abstract

Microtubules play fundamental roles in eukaryotic cells and have been investigated as target for drugs. Several studies showed the potential use of anti-microtubule agents against pathogenic protozoa. Taxol has been intensively studied in Leishmania spp. and microtubules have been considered as a promising antileishmanial drug target. It has been also shown that taxol interferes with the proliferation of Trypanosoma cruzi, leading to morphological alterations and interruption of nuclear division and cytokinesis. In the present work we show that T. cruzi bloodstream trypomastigotes were much more susceptible than epimastigotes, and in both forms taxol caused severe ultrastructural damage, especially associated to changes in the shape of the parasites. In trypomastigotes, different degrees of body contortion along the longitudinal axis and a marked dilatation of the flagellar pocket were detected. Treated epimastigotes presented a decrease in the electron density of the mitochondrial matrix, absence of mitochondrial cristae and an increase in the number of lipid droplets. Bizarre multi-flagellar epimastigotes were also detected, suggesting an interruption of the cytokinesis. Taxol caused no noticeable ultrastructural alterations on sub-pellicular and flagellar microtubules of both evolutive forms of T. cruzi. As already described in the literature, such structures in trypanosomatids are very resistant to microtubule disrupters when compared to those in mammalian cells. Taxol prevented the endocytosis of albumin-gold complexes by epimastigotes, and this result could be associated to the loss of the dynamic stability of the microtubules of the cytostome.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources