Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan;37(2):229-38.
doi: 10.1046/j.1365-313x.2003.01950.x.

GIP, a Petunia hybrida GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering

Affiliations
Free article

GIP, a Petunia hybrida GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering

Gili Ben-Nissan et al. Plant J. 2004 Jan.
Free article

Abstract

The Petunia hybrida GA-induced proteins (GIPs) belong to a large group of proteins identified in numerous plant species. These proteins share a similar C-terminal region containing 12 cysteine residues in conserved positions. To date, the function of these proteins remains unclear. We previously found that GIP1 expression coincides with cell elongation in stems and flowers and is induced by gibberellic acid (GA3). Transient expression of a GIP1:green fluorescent protein (GFP) fusion in tobacco bright yellow 2 (BY2) cells and immunoblot analyses suggest microsomal compartmentalization with possible endoplasmic reticulum (ER) localization. However, the polyclonal anti-GIP1 antibodies also reacted with proteins extracted from the cell wall. Three novel GIP homologs, GIP2, GIP4, and GIP5, were isolated. While GIP4, similar to GIP1, is putatively localized to the ER membrane, the cleavable hydrophobic N-terminal sequences of GIP2 and GIP5 suggest cell wall localization. GIP1 and GIP2 are expressed during cell elongation, whereas GIP4 and GIP5 are expressed during cell division; nevertheless, they all were induced by GA3. We generated transgenic petunia in which we repressed the putative cell wall protein GIP2. The transgenic plants exhibited late flowering and reduced stem elongation. These phenotypic alterations were found under low, but not moderate-high temperatures, suggesting functional redundancy under normal growth conditions. The expression pattern and cellular localization of GIP2, its regulation by GA, and the phenotype of the transgenic plants suggest a role in GA-mediated cell elongation and transition to flowering.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources