Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Dec;19(12):1251-8.
doi: 10.1051/medsci/200319121251.

[Unexpected roles of the peptidyl-prolyl cis/trans isomerase Pin1]

[Article in French]
Affiliations
Free article
Review

[Unexpected roles of the peptidyl-prolyl cis/trans isomerase Pin1]

[Article in French]
Sébastien B Lavoie et al. Med Sci (Paris). 2003 Dec.
Free article

Abstract

Peptidyl-prolyl isomerases (PPIases) are chaperone enzymes which alter the peptide bond between a given amino acid and a proline, changing it from the cis to the trans conformation and vice versa. This modification can cause dramatic structural modifications which can affect the properties of targeted proteins. The ubiquitous PPIase Pin1, conserved from yeast to human, has been shown to be necessary for entry into mitosis. The yeast homologue, Ess1, is essential for cell survival. Pin1 possesses a WW domain which specifically recognizes pSer-Pro and pThr-Pro motifs in which the first amino acid is phosphorylated. Pin1 binds to many proteins implicated in cell cycle regulation (e.g. p53, Myt1, Wee1, and Cdc25C). Pin1 also targets tau, a protein forming part of hte neuronal cytoskeleton which is hyper-phosphorylated in patients suffering from Alzheimer's disease (AD). Pin1 could, therefore, be involved in the pathogenesis of Ad. Furthermore, Pin1 also binds two proteins involved in transcription: Rpb1, the largest subunit of RNA polymerase II and Spt5, a regulator of the elongation of transcription. Both theses proteins possess domains rich in S/T-P motifs which can be targeted by Pin1 when phosphorylated. Recent studies show that Pin1 modulates the dephosphorylation of some proteins by allowing trans-specific phosphatases to recognize their target after isomerization. This unexpected role might allow protein regulation via peptidyl-prolyl isomerase activity.

PubMed Disclaimer

Similar articles

Cited by

Substances