Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Dec;62(12):1220-7.
doi: 10.1093/jnen/62.12.1220.

Environmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer disease

Affiliations
Comparative Study

Environmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer disease

Joanna L Jankowsky et al. J Neuropathol Exp Neurol. 2003 Dec.

Abstract

Epidemiological studies of Alzheimer patients from a wide variety of ethnic and socioeconomic backgrounds have identified education and occupation as environmental factors that can affect the risk of developing disease. A model of environmental manipulation in rodents uses enriched housing to provide cognitive and social stimulation. Previous studies have established elevations in synaptic number and function in rodents housed under enriched conditions. Recent experiments in hippocampal cultures have demonstrated that synaptic activity can influence the processing of amyloid precursor protein (APP). Here we examined whether changes in synaptic activity brought about by enriched housing might also influence the deposition of amyloid plaques in vivo using a transgenic mouse model of Alzheimer disease (AD). Mice co-expressing mutant APP and presenilin 1 (PS1) were housed in either enriched or standard cages from 2 months of age and then killed for pathological evaluation several months later. We find that, as compared to littermates housed in standard cages, the enriched APP/PS1 transgenic mice develop a higher amyloid burden with commensurate increases in aggregated and total A beta. These results suggest that A beta deposition can be exacerbated by the neuronal changes associated with enrichment, and demonstrate a substantial, albeit paradoxical, environmental influence on the progression of pathology in a mouse model of AD.

PubMed Disclaimer

Comment in

Publication types