Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec 31;125(52):16271-84.
doi: 10.1021/ja038223n.

On the nature of the multivalency effect: a thermodynamic model

Affiliations

On the nature of the multivalency effect: a thermodynamic model

Pavel I Kitov et al. J Am Chem Soc. .

Abstract

A quantitative model is proposed for the analysis of the thermodynamic parameters of multivalent interactions in dilute solutions or with immobilized multimeric receptor. The model takes into account all bound species and describes multivalent binding via two microscopic binding energies corresponding to inter- and intramolecular interactions (Delta G(o)inter and Delta G(o)intra), the relative contributions of which depend on the distribution of complexes with different numbers of occupied binding sites. The third component of the overall free energy, which we call the "avidity entropy" term, is a function of the degeneracy of bound states, Omega(i), which is calculated on the basis of the topology of interaction and the distribution of all bound species. This term grows rapidly with the number of receptor sites and ligand multivalency, it always favors binding, and explains why multivalency can overcome the loss of conformational entropy when ligands displayed at the ends of long tethers are bound. The microscopic parameters and may be determined from the observed binding energies for a set of oligovalent ligands by nonlinear fitting with the theoretical model. Here binding data obtained from two series of oligovalent carbohydrate inhibitors for Shiga-like toxins were used to verify the theory. The decavalent and octavalent inhibitors exhibit subnanomolar activity and are the most active soluble inhibitors yet seen that block Shiga-like toxin binding to its native receptor. The theory developed here in conjunction with our protocol for the optimization of tether length provides a predictive approach to design and maximize the avidity of multivalent ligands.

PubMed Disclaimer

Publication types

LinkOut - more resources