Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec 31;125(52):16285-93.
doi: 10.1021/ja038897y.

Folding of a stable DNA motif involves a highly cooperative network of interactions

Affiliations

Folding of a stable DNA motif involves a highly cooperative network of interactions

Ellen M Moody et al. J Am Chem Soc. .

Abstract

Hairpins are structural elements that play important roles in the folding and function of RNA and DNA. The extent of cooperativity in folding is an important aspect of the RNA folding problem. We reasoned that an investigation into the origin of cooperativity might be best carried out on a stable nucleic acid system with a limited number of interactions, such as a stable DNA hairpin loop. The stable d(cGNAg) hairpin loop motif (closing base pair in lower case; loop in upper case; N = A, C, G, or T) is stabilized through only three interactions: two loop-loop hydrogen bonds in a sheared GA base pair and a loop-closing base pair interaction. Herein, we investigate this network of interactions and test whether the loop-loop and loop-closing base pair interactions communicate. Thermodynamic measurements of nucleotide analogue substituted oligonucleotides were used to probe the additivity of the interactions. On the basis of double mutant cycles, all interactions were found to be nonadditive and interdependent, suggesting that loop-loop and loop-closing base pair interactions form in a highly cooperative manner. When double mutant cycles were repeated in the absence of the other interaction, nonadditivity was significantly reduced suggesting that coupling is indirect and requires all three interactions in order to be optimal. A cooperative network of interactions helps explain the structural and energetic bases of stability in certain DNA hairpins and paves the way for similar studies in more complex nucleic acid systems.

PubMed Disclaimer

Publication types

LinkOut - more resources