Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan;53(1):122-8.
doi: 10.2337/diabetes.53.1.122.

Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion

Affiliations

Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion

Hindrik Mulder et al. Diabetes. 2004 Jan.

Abstract

Lipids may serve as coupling factors in K(ATP)-independent glucose sensing in beta-cells. We have previously demonstrated that beta-cells harbor lipase activities, one of which is the hormone-sensitive lipase. Whether beta-cell lipases are critical for glucose-stimulated insulin secretion (GSIS) by providing lipid-derived signals from endogenous lipids is unknown. Therefore, using a lipase inhibitor (orlistat), we examined whether lipase inhibition reduces insulin secretion. Islet lipolysis stimulated by glucose and diglyceride lipase activity was abolished by orlistat. Incubation of rat islets with orlistat dose dependently inhibited GSIS; this inhibition was reversed by 1 mmol/l palmitate, suggesting that orlistat acts via impaired formation of an acylglyceride-derived coupling signal. Orlistat inhibited the potentiating effect of forskolin on GSIS, an effect proposed to be due to activation of a lipase. In perifused islets, orlistat attenuated mainly the second phase of insulin secretion. Because the rise in islet ATP/ADP levels in response to glucose and oxidation of the sugar were unaffected by orlistat whereas the second phase of insulin secretion was reduced, it seems likely that a lipid coupling factor involved in K(ATP)-independent glucose sensing has been perturbed. Thus, beta-cell lipase activity is involved in GSIS, emphasizing the important role of beta-cell lipid metabolism for insulin secretion.

PubMed Disclaimer

Publication types

MeSH terms