Protein topology determines binding mechanism
- PMID: 14694192
- PMCID: PMC327178
- DOI: 10.1073/pnas.2534828100
Protein topology determines binding mechanism
Abstract
Protein recognition and binding, which result in either transient or long-lived complexes, play a fundamental role in many biological functions, but sometimes also result in pathologic aggregates. We use a simplified simulation model to survey a range of systems where two highly flexible protein chains form a homodimer. In all cases, this model, which corresponds to a perfectly funneled energy landscape for folding and binding, reproduces the macroscopic experimental observations on whether folding and binding are coupled in one step or whether intermediates occur. Owing to the minimal frustration principle, we find that, as in the case of protein folding, the native topology is the major factor that governs the choice of binding mechanism. Even when the monomer is stable on its own, binding sometimes occurs fastest through unfolded intermediates, thus showing the speedup envisioned in the fly-casting scenario for molecular recognition.
Figures





Similar articles
-
A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes.J Mol Biol. 2005 Mar 4;346(4):1121-45. doi: 10.1016/j.jmb.2004.12.021. Epub 2005 Jan 26. J Mol Biol. 2005. PMID: 15701522
-
The energy landscape of modular repeat proteins: topology determines folding mechanism in the ankyrin family.J Mol Biol. 2005 Dec 2;354(3):679-92. doi: 10.1016/j.jmb.2005.09.078. Epub 2005 Oct 13. J Mol Biol. 2005. PMID: 16257414
-
The folding and dimerization of HIV-1 protease: evidence for a stable monomer from simulations.J Mol Biol. 2004 Jun 25;340(1):67-79. doi: 10.1016/j.jmb.2004.04.028. J Mol Biol. 2004. PMID: 15184023
-
Mechanisms of protein assembly: lessons from minimalist models.Acc Chem Res. 2006 Feb;39(2):135-42. doi: 10.1021/ar040204a. Acc Chem Res. 2006. PMID: 16489733 Review.
-
Water mediation in protein folding and molecular recognition.Annu Rev Biophys Biomol Struct. 2006;35:389-415. doi: 10.1146/annurev.biophys.35.040405.102134. Annu Rev Biophys Biomol Struct. 2006. PMID: 16689642 Review.
Cited by
-
Binding and folding of the small bacterial chaperone HdeA.J Phys Chem B. 2013 Oct 24;117(42):13219-25. doi: 10.1021/jp403264s. Epub 2013 Jul 1. J Phys Chem B. 2013. PMID: 23738772 Free PMC article.
-
Predictive energy landscapes for protein-protein association.Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19244-9. doi: 10.1073/pnas.1216215109. Epub 2012 Nov 5. Proc Natl Acad Sci U S A. 2012. PMID: 23129648 Free PMC article.
-
Coupled folding and binding with 2D Window-Exchange Umbrella Sampling.J Comput Chem. 2016 Mar 5;37(6):587-94. doi: 10.1002/jcc.24004. Epub 2015 Aug 6. J Comput Chem. 2016. PMID: 26250657 Free PMC article.
-
Assembly of the five-way junction in the ribosomal small subunit using hybrid MD-Gō simulations.J Phys Chem B. 2012 Jun 14;116(23):6819-31. doi: 10.1021/jp212614b. Epub 2012 May 25. J Phys Chem B. 2012. PMID: 22458631 Free PMC article.
-
Simulations Reveal Multiple Intermediates in the Unzipping Mechanism of Neuronal SNARE Complex.Biophys J. 2018 Oct 16;115(8):1470-1480. doi: 10.1016/j.bpj.2018.08.043. Epub 2018 Sep 7. Biophys J. 2018. PMID: 30268539 Free PMC article.
References
-
- Wodak, S. & Janin, J. (2002) Adv. Protein Chem. 61, 9–72. - PubMed
-
- Ofran, Y. & Rost, B. (2003) J. Mol. Biol. 325, 377–387. - PubMed
-
- Solomon, B., Taraboulos, A. & Katchalski-Katzir, E. (2001) Conformational Diseases—A Compendium (Bialik, Jerusalem).
-
- Onuchic, J. N., Socci, N. D., Luthey-Schulten, Z. & Wolynes, P. G. (1996) Fold. Des. 1, 441–450. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources