Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan 15;292(2):304-11.
doi: 10.1016/j.yexcr.2003.09.012.

Multiple independent kinase cascades are targeted by hyperosmotic stress but only one activates stress kinase p38

Affiliations

Multiple independent kinase cascades are targeted by hyperosmotic stress but only one activates stress kinase p38

Xiaohong Mao et al. Exp Cell Res. .

Abstract

In this report, we analyse the effects of osmotic shock on signal transduction in CHO cells. We demonstrate that at least three different kinase cascades are switched on upon osmotic shock, namely PKA, AMPK, and MLTK. Whereas PKA from cells treated with forskolin activated stress kinase p38, PKA from cells treated with sorbitol did not activate p38, although the enzyme is activated in both cases as analysed in vitro using a specific peptide target. Further, osmolar shock activated AMPK but treatment of the cells with the AMPK activator 5-amino-4-imidazolecarboxamide (AICAr) did not result in p38 activation, strongly suggesting that AMPK is not involved in stress kinase activation. Transfection of CHO cells with dominant negative recombinants of MLTKalpha resulted in inhibition of sorbitol-mediated p38 activation, indicating that the mixed-lineage kinase is involved in the activation of p38 by sorbitol. Finally, in CHO cells overexpressing wild-type MLTKalpha, no activation of AMPK of PKA could be demonstrated, indicating that the activated kinase cascades are not involved in a cross-talk process.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms