Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar 19;279(12):11006-15.
doi: 10.1074/jbc.M313507200. Epub 2003 Dec 29.

pH Dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits

Affiliations
Free article

pH Dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits

Mette Hesselager et al. J Biol Chem. .
Free article

Abstract

The exact subunit combinations of functional native acid-sensing ion channels (ASICs) have not been established yet, but both homomeric and heteromeric channels are likely to exist. To determine the ability of different subunits to assemble into heteromeric channels, a number of ASIC1a-, ASIC1b-, ASIC2a-, ASIC2b-, and ASIC3-containing homo- and heteromeric channels were studied by whole-cell patch clamp recordings with respect to pH sensitivity, desensitization kinetics, and level of sustained current normalized to peak current. Analyzing and comparing data for these three features demonstrated unique heteromeric channels in a number of co-expression experiments. Formation of heteromeric ASIC1a+2a and ASIC1b+2a channels was foremost supported by the desensitization characteristics that were independent of proton concentration, a feature none of the respective homomeric channels has. Several lines of evidence supported formation of ASIC1a+3, ASIC1b+3, and ASIC2a+3 heteromeric channels. The most compelling was the desensitization characteristics, which, besides being proton-independent, were faster than those of any of the respective homomeric channels. ASIC2b, which homomerically expressed is not activated by protons per se, did not appear to form unique heteromeric combinations with other subunits and in fact appeared to suppress the function of ASIC1b. Co-expression of three subunits such as ASIC1a+2a+3 and ASIC1b+2a+3 resulted in data that could best be explained by coexistence of multiple channel populations within the same cell. This observation seems to be in good agreement with the fact that ASIC-expressing sensory neurons display a variety of acid-evoked currents.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources