Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases
- PMID: 14701854
- DOI: 10.1074/jbc.M312333200
Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases
Abstract
Epidermal growth factor receptor (EGFR) activation is absolutely required for cervical cell proliferation. This suggests that EGFR-inhibitory agents may be of therapeutic value. In the present study, we investigated the effects of epigallocatechin-3-gallate (EGCG), a bioactive green tea polyphenol, on EGFR signaling in cervical cells. EGCG inhibits epidermal growth factor-dependent activation of EGFR, and EGFR-dependent activation of the mitogen-activated protein kinases ERK1/2. EGCG also inhibits EGFR-dependent AKT activity. The EGCG-dependent reduction in ERK and AKT activity is associated with reduced phosphorylation of downstream substrates, including p90RSK, FKHR, and BAD. These changes are associated with increased p53, p21(WAF-1), and p27(KIP-1) levels, reduced cyclin E level, and reduced CDK2 kinase activity. Consistent with these findings, flow cytometry and TUNEL (terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling) staining revealed EGCG-dependent G(1) arrest. Moreover, sustained EGCG treatment caused apoptotic cell death. In addition to inhibiting EGFR, cell-free studies demonstrated that EGCG directly inhibits ERK1/2 and AKT, suggesting that EGCG acts simultaneously at multiple levels to inhibit EGF-dependent signaling. Importantly, the EGCG inhibition is selective, as EGCG does not effect the EGFR-dependent activation of JNK. These results suggest that EGCG acts to selectively inhibit multiple EGF-dependent kinases to inhibit cell proliferation.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
