Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling
- PMID: 14701904
- PMCID: PMC327180
- DOI: 10.1073/pnas.0304533101
Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling
Abstract
In vivo fluorescent labeling of an expressed protein has enabled the observation of its stability and aggregation directly in bacterial cells. Mammalian cellular retinoic acid-binding protein I (CRABP I) was mutated to incorporate in a surface-exposed omega loop the sequence Cys-Cys-Gly-Pro-Cys-Cys, which binds specifically to a biarsenical fluorescein dye (FlAsH). Unfolding of labeled tetra-Cys CRABP I is accompanied by enhancement of FlAsH fluorescence, which made it possible to determine the free energy of unfolding of this protein by urea titration in cells and to follow in real time the formation of inclusion bodies by a slow-folding, aggregationprone mutant (FlAsH-labeled P39A tetra-Cys CRABP I). Aggregation in vivo displayed a concentration-dependent apparent lag time similar to observations of protein aggregation in purified in vitro model systems.
Figures



Similar articles
-
Aggregation of a slow-folding mutant of a beta-clam protein proceeds through a monomeric nucleus.Biochemistry. 2005 May 17;44(19):7266-74. doi: 10.1021/bi047404e. Biochemistry. 2005. PMID: 15882065
-
Effects of osmolytes on protein folding and aggregation in cells.Methods Enzymol. 2007;428:355-72. doi: 10.1016/S0076-6879(07)28021-8. Methods Enzymol. 2007. PMID: 17875429
-
Cross-strand split tetra-Cys motifs as structure sensors in a beta-sheet protein.Chem Biol. 2008 Oct 20;15(10):1104-15. doi: 10.1016/j.chembiol.2008.09.006. Chem Biol. 2008. PMID: 18940670 Free PMC article.
-
Exploration of biarsenical chemistry--challenges in protein research.Chembiochem. 2011 May 16;12(8):1152-67. doi: 10.1002/cbic.201100114. Epub 2011 Apr 28. Chembiochem. 2011. PMID: 21538762 Review.
-
Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy.Methods. 2001 Jul;24(3):289-96. doi: 10.1006/meth.2001.1189. Methods. 2001. PMID: 11403577 Review.
Cited by
-
Role of Proteome Physical Chemistry in Cell Behavior.J Phys Chem B. 2016 Sep 15;120(36):9549-63. doi: 10.1021/acs.jpcb.6b04886. Epub 2016 Aug 24. J Phys Chem B. 2016. PMID: 27513457 Free PMC article. Review.
-
Laboratory evolution of fast-folding green fluorescent protein using secretory pathway quality control.PLoS One. 2008 Jun 11;3(6):e2351. doi: 10.1371/journal.pone.0002351. PLoS One. 2008. PMID: 18545653 Free PMC article.
-
An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms.Nat Struct Mol Biol. 2009 Jun;16(6):582-8. doi: 10.1038/nsmb.1592. Nat Struct Mol Biol. 2009. PMID: 19491935 Review.
-
AggFluor: Fluorogenic Toolbox Enables Direct Visualization of the Multi-Step Protein Aggregation Process in Live Cells.J Am Chem Soc. 2020 Oct 14;142(41):17515-17523. doi: 10.1021/jacs.0c07245. Epub 2020 Oct 5. J Am Chem Soc. 2020. PMID: 32915553 Free PMC article.
-
Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant.Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13357-61. doi: 10.1073/pnas.0603772103. Epub 2006 Aug 9. Proc Natl Acad Sci U S A. 2006. PMID: 16899544 Free PMC article.
References
-
- Betts, S., Haase-Pettingell, C. & King, J. A. (1997) Adv. Prot. Chem. 50, 243–264. - PubMed
-
- Fink, A. L. (1998) Folding Des. 3, R9–R23. - PubMed
-
- Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. (2002) Nat. Rev. Mol. Cell Biol. 3, 906–918. - PubMed
-
- Banaszak, L., Winter, N., Xu, Z., Bernlohr, D. A., Cowan, S. & Jones, T. A. (1994) Adv. Protein Chem. 45, 89–151. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources