Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan;23(1):50-60.
doi: 10.1097/00003226-200401000-00009.

Q-switched erbium:YAG laser corneal trephination: thermal damage in corneal stroma and cut regularity of nonmechanical Q-switched erbium:YAG laser corneal trephination for penetrating keratoplasty

Affiliations

Q-switched erbium:YAG laser corneal trephination: thermal damage in corneal stroma and cut regularity of nonmechanical Q-switched erbium:YAG laser corneal trephination for penetrating keratoplasty

M Stojkovic et al. Cornea. 2004 Jan.

Abstract

Purpose: To assess stromal thermal damage and cut regularity induced by nonmechanical Q-switched Er:YAG laser corneal trephination for penetrating keratoplasty.

Methods: Corneal trephination was performed in 80 enucleated porcine eyes by Q-switched (2.94-microm) Er:YAG laser, along with donor and recipient masks made of metal or ceramic. All combinations of 0.65- or 0.96-mm spot diameter and 45- or 50-mJ/pulse energy setting were used with each of the masks at a 5-Hz repetition rate. Corneas were processed for histologic examinations. Stromal thermal damage was quantified on PAS-stained slides, and cut regularity was assessed semiquantitatively on a scale from 0 (regular) to 3 (highly irregular). Transmission electron microscopy and scanning electron microscopy were performed on selected specimens.

Results: The least thermal damage (mean +/- SD = 6.2 +/- 0.7 microm) was found in the donor ceramic group with 50-mJ/pulse energy and 0.65-mm spot diameter, while the best regularity of the cut (1.2 +/- 0.4) was found in the donor ceramic group with 45-mJ pulse energy and 0.65-mm spot diameter. Thermal damage was less pronounced in donor than in recipient corneas (P < 0.01). Smaller spot diameter (0.65 mm) led to less thermal damage (P < 0.01) than the use of a 0.96-mm spot diameter. The differences in thermal damage between ceramic and metal masks were minimal.

Conclusions: After Q-switched Er:YAG laser corneal trephination for nonmechanical penetrating keratoplasty, reproducible high cut regularity and low concomitant thermal damage were observed. This is an encouraging finding in the search for a nonmechanical trephine for penetrating keratoplasty combining high precision and low cost.

PubMed Disclaimer

Publication types

LinkOut - more resources