Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan 12;43(1):206-13.
doi: 10.1021/ic034892q.

Coordination chemistry of the antitumor metallocene molybdocene dichloride with biological ligands

Affiliations

Coordination chemistry of the antitumor metallocene molybdocene dichloride with biological ligands

Jenny B Waern et al. Inorg Chem. .

Abstract

The relative affinity of molybdocene dichloride (Cp(2)MoCl(2)) for the thiol, amino, carboxylate, phosphate(O) and heterocyclic(N) donor ligands present in amino acids and nucleotides, has been studied in aqueous solutions at pH 2-7, using (1)H, (13)C and (31)P NMR spectroscopy. Molybdocene dichloride forms the highly water soluble, air-stable complexes Cp(2)Mo(Cys)(2) and Cp(2)Mo(GS)(2) with cysteine and glutathione respectively, via coordination of the deprotonated thiol groups. While coordination to the imidazole nitrogen in histidine was observed, no evidence for coordination of the amino or carboxylate groups in the amino acids cysteine, histidine, alanine or lysine to Cp(2)MoCl(2) was detected. Competition experiments with dAMP, ribose monophosphate and histidine showed preferential coordination to the cysteine thiol over the phosphate(O) and heterocyclic(N) groups. Cp(2)Mo(Cys)(2) is stable in the presence of excess dAMP or ribose monophosphate and Cys displaces coordinated histidine, dAMP or ribose monophosphate to give Cp(2)Mo(Cys)(2). These results provide further evidence against interaction with DNA as the key interaction that is related to the antitumor activity of molybdocene dichloride. The implications of these results for the biological activity of the antitumor metallocene and the likely species formed in vivo are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources