Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Feb;14(2):215-23.
doi: 10.1093/cercor/bhg121.

Estrogen replacement increases spinophilin-immunoreactive spine number in the prefrontal cortex of female rhesus monkeys

Affiliations
Comparative Study

Estrogen replacement increases spinophilin-immunoreactive spine number in the prefrontal cortex of female rhesus monkeys

Yong Tang et al. Cereb Cortex. 2004 Feb.

Abstract

While studies have shown that estrogen affects hippocampal spine density and function, behavioral studies in humans and nonhuman primates have also implicated the prefrontal cortex in the effects of estrogen on cognition. However, the potential for similar estrogen-induced increases in spines and synapses in the prefrontal cortex has not been investigated in primates. Moreover, it is not known if such an estrogen effect would be manifested throughout the neocortex or primarily in the regions involved in cognition. Therefore, we investigated the effects of estrogen on dendritic spines in the prefrontal and primary visual cortices of young rhesus monkeys. Young female monkeys were ovariectomized and administered either estradiol cypionate or vehicle by intramuscular injection. Using an antibody against the spine-associated protein, spinophilin, spine numbers were estimated in layer I of area 46 and in layer I of the opercular portion of area V1 (V1o). Spine numbers in layer I of area 46 were significantly increased (55%) in the ovariectomy + estrogen group compared to the ovariectomy + vehicle group, yet spine numbers in layer I of area V1o were equivalent across the two groups. The present results suggest that estrogen's effects on synaptic organization influence select neocortical layers and regions in a primate model, and provide a morphological basis for enhanced prefrontal cortical functions following estrogen replacement.

PubMed Disclaimer

Publication types

LinkOut - more resources