Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Feb 5;58(2):175-88.
doi: 10.1002/neu.10317.

Short-range axonal/dendritic transport by myosin-V: A model for vesicle delivery to the synapse

Affiliations
Comparative Study

Short-range axonal/dendritic transport by myosin-V: A model for vesicle delivery to the synapse

Jeremiah R Brown et al. J Neurobiol. .

Abstract

Myosin-V is a versatile motor involved in short-range axonal/dendritic transport of vesicles in the actin-rich cortex and synaptic regions of nerve cells. It binds to several different kinds of neuronal vesicles by its globular tail domain but the mechanism by which it is recruited to these vesicles is not known. In this study, we used an in vitro motility assay derived from axoplasm of the squid giant axon to study the effects of the globular tail domain on the transport of neuronal vesicles. We found that the globular tail fragment of myosin-V inhibited actin-based vesicle transport by displacing native myosin-V and binding to vesicles. The globular tail domain pulled down kinesin, a known binding partner of myosin-V, in affinity isolation experiments. These data confirmed earlier evidence that kinesin and myosin-V interact to form a hetero-motor complex. The formation of a kinesin/myosin-V hetero-motor complex on vesicles is thought to facilitate the coordination of long-range movement on microtubules and short-range movement on actin filaments. The direct interaction of motors from both filament systems may represent the mechanism by which the transition of vesicles from microtubules to actin filaments is regulated. These results are the first demonstration that the recombinant tail of myosin-V inhibits vesicle transport in an in vitro motility assay. Future experiments are designed to determine the functional significance of the interaction between myosin-V and kinesin and to identify other proteins that bind to the globular tail domain of myosin-V.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources