Detection of functional modules from protein interaction networks
- PMID: 14705023
- DOI: 10.1002/prot.10505
Detection of functional modules from protein interaction networks
Abstract
Complex cellular processes are modular and are accomplished by the concerted action of functional modules (Ravasz et al., Science 2002;297:1551-1555; Hartwell et al., Nature 1999;402:C47-52). These modules encompass groups of genes or proteins involved in common elementary biological functions. One important and largely unsolved goal of functional genomics is the identification of functional modules from genomewide information, such as transcription profiles or protein interactions. To cope with the ever-increasing volume and complexity of protein interaction data (Bader et al., Nucleic Acids Res 2001;29:242-245; Xenarios et al., Nucleic Acids Res 2002;30:303-305), new automated approaches for pattern discovery in these densely connected interaction networks are required (Ravasz et al., Science 2002;297:1551-1555; Bader and Hogue, Nat Biotechnol 2002;20:991-997; Snel et al., Proc Natl Acad Sci USA 2002;99:5890-5895). In this study, we successfully isolate 1046 functional modules from the known protein interaction network of Saccharomyces cerevisiae involving 8046 individual pair-wise interactions by using an entirely automated and unsupervised graph clustering algorithm. This systems biology approach is able to detect many well-known protein complexes or biological processes, without reference to any additional information. We use an extensive statistical validation procedure to establish the biological significance of the detected modules and explore this complex, hierarchical network of modular interactions from which pathways can be inferred.
Copyright 2003 Wiley-Liss, Inc.
Similar articles
-
Identification of functional modules in a PPI network by clique percolation clustering.Comput Biol Chem. 2006 Dec;30(6):445-51. doi: 10.1016/j.compbiolchem.2006.10.001. Epub 2006 Nov 13. Comput Biol Chem. 2006. PMID: 17098476
-
Combining functional and topological properties to identify core modules in protein interaction networks.Proteins. 2006 Sep 1;64(4):948-59. doi: 10.1002/prot.21071. Proteins. 2006. PMID: 16794996
-
Modular organization of protein interaction networks.Bioinformatics. 2007 Jan 15;23(2):207-14. doi: 10.1093/bioinformatics/btl562. Epub 2006 Nov 8. Bioinformatics. 2007. PMID: 17092991
-
Pharmacological interference with protein-protein interactions mediated by coiled-coil motifs.Handb Exp Pharmacol. 2008;(186):461-82. doi: 10.1007/978-3-540-72843-6_19. Handb Exp Pharmacol. 2008. PMID: 18491064 Review.
-
A review on models and algorithms for motif discovery in protein-protein interaction networks.Brief Funct Genomic Proteomic. 2008 Mar;7(2):147-56. doi: 10.1093/bfgp/eln015. Epub 2008 Apr 28. Brief Funct Genomic Proteomic. 2008. PMID: 18443014 Review.
Cited by
-
In search of the biological significance of modular structures in protein networks.PLoS Comput Biol. 2007 Jun;3(6):e107. doi: 10.1371/journal.pcbi.0030107. Epub 2007 Apr 30. PLoS Comput Biol. 2007. PMID: 17542644 Free PMC article.
-
Investigating topological and functional features of multimodular proteins.J Biomed Biotechnol. 2009;2009:472415. doi: 10.1155/2009/472415. Epub 2009 Dec 30. J Biomed Biotechnol. 2009. PMID: 20069113 Free PMC article.
-
Regulon organization of Arabidopsis.BMC Plant Biol. 2008 Sep 30;8:99. doi: 10.1186/1471-2229-8-99. BMC Plant Biol. 2008. PMID: 18826618 Free PMC article.
-
HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks.Nucleic Acids Res. 2018 Apr 6;46(6):e33. doi: 10.1093/nar/gkx1313. Nucleic Acids Res. 2018. PMID: 29315405 Free PMC article.
-
Recent advances in clustering methods for protein interaction networks.BMC Genomics. 2010 Dec 1;11 Suppl 3(Suppl 3):S10. doi: 10.1186/1471-2164-11-S3-S10. BMC Genomics. 2010. PMID: 21143777 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases