Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;12(5):673-81.
doi: 10.1034/j.1600-0625.2003.00015.x.

Cryotherapy modifies synthetic activity and differentiation of keloidal fibroblasts in vitro

Affiliations

Cryotherapy modifies synthetic activity and differentiation of keloidal fibroblasts in vitro

A Dalkowski et al. Exp Dermatol. 2003 Oct.

Abstract

In order to obtain a persuasive explanation for the beneficial clinical effect of cryotherapy on keloids, we developed a reproducible model to apply freezing temperatures on cell cultures, and investigated their influence on proliferation, viability, synthetic activity and differentiation of dermal fibroblasts in vitro. Cell cultures were established from 13 untreated keloids and 10 healthy skin specimens matched for age and skin localization to the donors. No significant influence of cell freezing on the proliferation rates of both keloidal and normal fibroblasts was documented, but mechanical cell destruction with a wide variation in lethality rates (29% average lethal effect on keloidal fibroblasts and 41% on normal ones) was observed. When comparing specimens of keloidal and normal tissue derived from the same four donors, the keloidal fibroblasts were similar regarding their synthetic activity but presented enhanced tenascin-C expression compared with the normal fibroblasts. After cryotherapy, delayed collagen III increase was detected in both cell types (P = 0.03). The collagen II/collagen I ratio increased from 1.6 to 2.8 in the keloidal and only from 1.9 to 2.2 in the normal fibroblasts after subcultivation. Normal fibroblasts exhibited a significantly lasting increase in fibronectin synthesis after freezing (P = 0.03). The intensity of staining against tenascin-C was decreased in five of nine keloidal fibroblast cultures after cryotherapy (P < 0.05) but increased in four of five normal fibroblast cultures (P = 0.016), so that the intensity of tenascin-C staining after freezing became identical in both cell types. Immunoblot studies in four patients and two controls confirmed a temporary decrease of tenascin-C in keloidal but not in normal fibroblasts immediately after freezing. Significantly decreased staining with two markers of myogenic differentiation, myosin in keloidal fibroblasts (P = 0.002) and desmin (P = 0.007) in normal fibroblasts, could also be detected after treatment. In summary, with the help of a model for controlled cell freezing in vitro, cryotherapy was found to modify collagen synthesis and differentiation of keloidal fibroblasts.

PubMed Disclaimer

MeSH terms

LinkOut - more resources