Local-global conformational coupling in a heptahelical membrane protein: transport mechanism from crystal structures of the nine states in the bacteriorhodopsin photocycle
- PMID: 14705925
- DOI: 10.1021/bi035843s
Local-global conformational coupling in a heptahelical membrane protein: transport mechanism from crystal structures of the nine states in the bacteriorhodopsin photocycle
Abstract
Proton pumps utilize a chemical or photochemical reaction to create pH and electrical gradients between the interior and the exterior of cells and organelles that energize ATP synthesis and the accumulation and extrusion of solutes and ions. G-protein coupled receptors bind agonists and assume signaling states that communicate with the coupled transducers. How these two kinds of proteins convert chemical potential to a proton transmembrane electrochemical potential or a signal are the great questions in structural membrane biology, and they may have a common answer. Bacteriorhodopsin, a particularly simple integral membrane protein, functions as a proton pump but has a heptahelical structure like membrane receptors. Crystallographic structures are now available for all of the intermediates of the bacteriorhodopsin transport cycle, and they describe the proton translocation mechanism, step by step and in atomic detail. The results show how local conformational changes propagate upon the gradual relaxation of the initially twisted photoisomerized retinal toward the two membrane surfaces. Such local-global conformational coupling between the ligand-binding site and the distant regions of the protein may be the shared mechanism of ion pumps and G-protein related receptors.
Similar articles
-
X-ray diffraction of bacteriorhodopsin photocycle intermediates.Mol Membr Biol. 2004 May-Jun;21(3):143-50. doi: 10.1080/09687680410001666345. Mol Membr Biol. 2004. PMID: 15204622 Review.
-
Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin.Nature. 2000 Aug 10;406(6796):645-8. doi: 10.1038/35020599. Nature. 2000. PMID: 10949307
-
Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2.J Mol Biol. 2008 Feb 1;375(5):1267-81. doi: 10.1016/j.jmb.2007.11.039. Epub 2007 Nov 22. J Mol Biol. 2008. PMID: 18082767
-
Model for proton transport coupled to protein conformational change: application to proton pumping in the bacteriorhodopsin photocycle.J Am Chem Soc. 2006 Dec 27;128(51):16778-90. doi: 10.1021/ja060742d. J Am Chem Soc. 2006. PMID: 17177428
-
Studies of the bacteriorhodopsin photocycle without the use of light: clues to proton transfer coupled reactions.J Mol Microbiol Biotechnol. 2007;12(3-4):210-7. doi: 10.1159/000099642. J Mol Microbiol Biotechnol. 2007. PMID: 17587869 Review.
Cited by
-
Microcompartments and protein machines in prokaryotes.J Mol Microbiol Biotechnol. 2013;23(4-5):243-69. doi: 10.1159/000351625. Epub 2013 Aug 5. J Mol Microbiol Biotechnol. 2013. PMID: 23920489 Free PMC article. Review.
-
Structural changes in the L photointermediate of bacteriorhodopsin.J Mol Biol. 2007 Feb 2;365(5):1379-92. doi: 10.1016/j.jmb.2006.11.016. Epub 2006 Nov 10. J Mol Biol. 2007. PMID: 17141271 Free PMC article.
-
Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin.Curr Opin Struct Biol. 2009 Aug;19(4):433-9. doi: 10.1016/j.sbi.2009.07.009. Epub 2009 Jul 28. Curr Opin Struct Biol. 2009. PMID: 19643594 Free PMC article. Review.
-
The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants.J Biol Chem. 2020 Oct 30;295(44):14793-14804. doi: 10.1074/jbc.RA120.014118. Epub 2020 Jul 23. J Biol Chem. 2020. PMID: 32703899 Free PMC article.
-
Propagating structural perturbation inside bacteriorhodopsin: crystal structures of the M state and the D96A and T46V mutants.Biochemistry. 2006 Oct 3;45(39):12003-10. doi: 10.1021/bi061310i. Biochemistry. 2006. PMID: 17002299 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources