Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jan;21(1):53-60.
doi: 10.1016/s0928-0987(03)00142-8.

The intestinal H+/peptide symporter PEPT1: structure-affinity relationships

Affiliations
Review

The intestinal H+/peptide symporter PEPT1: structure-affinity relationships

Matthias Brandsch et al. Eur J Pharm Sci. 2004 Jan.

Abstract

Peptide transporter 1, PEPT1, of the mammalian enterocyte is presently under intense investigation in many laboratories because of its nutritional importance in the absorption of protein hydrolysis products and because more recent studies have shown that many drugs and prodrugs gain entry into the systemic circulation via PEPT1. Until the exact structural features of the substrate binding site of PEPT1 become available, for example by X-ray crystallography, determination of affinities followed by proof of actual membrane translocation will have to suffice when testing for possible new substrates for PEPT1. Affinity constants reflect the strength of their interaction with the binding site of the transporter. A review of the literature shows a wide range of affinity constants between 2 microM and 30 mM. We consider affinity constants for substrates or inhibitors of PEPT1 lower than 0.5 mM as high affinity, between 0.5 and 5.0 mM as medium affinity and above 5 mM as low affinity. Values above 15 mM we consider with great caution. In this mini-review we discuss affinities and structural determinants which affect affinities of a variety of substrates for PEPT1.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources