Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jan 2;556(1-3):260-4.
doi: 10.1016/s0014-5793(03)01400-5.

Phospholipid phase transitions in homogeneous nanometer scale bilayer discs

Affiliations
Free article
Comparative Study

Phospholipid phase transitions in homogeneous nanometer scale bilayer discs

Andrew W Shaw et al. FEBS Lett. .
Free article

Abstract

Nanoscale protein supported phospholipid bilayer discs, or Nanodiscs, were produced for the purpose of studying the phase transition behavior of the incorporated lipids. Nanodiscs and vesicles were prepared with two phospholipids, dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine, and the phase transition of each was analyzed using laurdan fluorescence and differential scanning calorimetry. Laurdan is a fluorescent probe sensitive to the increase of hydration in the lipid bilayer that accompanies the gel to liquid crystalline phase transition. The emission intensity profile can be used to derive the generalized polarization, a measure of the relative amount of each phase present. Differential scanning calorimetry was used to further quantitate the phase transition of the phospholipids. Both methods revealed broader transitions for the lipids in Nanodiscs compared to those in vesicles. Also, the transition midpoint was shifted 3-4 degrees C higher for both lipids when incorporated into Nanodiscs. These findings are explained by a loss of cooperativity in the lipids of Nanodiscs which is attributable to the small size of the Nanodiscs as well as the interaction of boundary lipids with the protein encircling the discs. The broad transition of the Nanodisc lipid bilayer better mimics the phase behavior of cellular membranes than vesicles, making Nanodiscs a 'native-like' lipid environment in which to study membrane associated proteins.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources