Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan 15;172(2):1169-76.
doi: 10.4049/jimmunol.172.2.1169.

Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism

Affiliations

Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism

Tao Jin et al. J Immunol. .

Abstract

Alpha-defensins are peptides secreted by polymorphonuclear cells and provide antimicrobial protection mediated by disruption of the integrity of bacterial cell walls. Staphylokinase is an exoprotein produced by Staphylococcus aureus, which activates host plasminogen. In this study, we analyzed the impact of interaction between alpha-defensins and staphylokinase on staphylococcal growth. We observed that staphylokinase induced extracellular release of alpha-defensins from polymorphonuclear cells. Moreover, a direct binding between alpha-defensins and staphylokinase was shown to result in a complex formation. The biological consequence of this interaction was an almost complete inhibition of the bactericidal effect of alpha-defensins. Notably, staphylokinase with blocked plasminogen binding site still retained its ability to neutralize the bactericidal effect of alpha-defensins. In contrast, a single mutation of a staphylokinase molecule at position 74, substituting lysine for alanine, resulted in a 50% reduction of its alpha-defensin-neutralizing properties. The bactericidal properties of alpha-defensins were tested in 19 S. aureus strains in vitro and in a murine model of S. aureus arthritis. Staphylococcal strains producing staphylokinase were protected against the bactericidal effect of alpha-defensins. When staphylokinase was added to staphylokinase-negative S. aureus cultures, it almost totally abrogated the effect of alpha-defensins. Finally, human neutrophil peptide 2 injected intra-articularly along with bacteria alleviated joint destruction. In this study, we report a new property of staphylokinase, its ability to induce secretion of defensins, to complex bind them and to neutralize their bactericidal effect. Staphylokinase production may therefore be responsible in vivo for defensin resistance during S. aureus infections.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources