Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov;121(5):1197-204.
doi: 10.1046/j.1523-1747.2003.12518.x.

Endurance training enhances vasodilation induced by nitric oxide in human skin

Affiliations
Free article

Endurance training enhances vasodilation induced by nitric oxide in human skin

Yann Boegli et al. J Invest Dermatol. 2003 Nov.
Free article

Abstract

Endurance training modifies the thermoregulatory control of skin blood flow, as manifested by a greater augmentation of skin perfusion for the same increase in core temperature in athletes, in comparison with sedentary subjects. In this study, we tested the hypothesis that a component of this adaptation might reside in a higher ability of cutaneous blood vessels to respond to vasodilatory stimuli. We recruited healthy nonsmoking males, either endurance trained or sedentary, in two different age ranges (18-35 y and >50 y). Skin blood flow was measured in the forearm skin, using a laser Doppler imager, allowing to record the vasodilatory responses to the following stimuli: iontophoresis of acetylcholine (an endothelium-dependent vasodilator), iontophoresis of sodium nitroprusside (a nitric oxide donor), and release of a temporary interruption of arterial inflow (reactive hyperemia). There was no effect of training on reactive hyperemia or the response to acetylcholine. In contrast, the increase in perfusion following the iontophoresis of sodium nitroprusside, expressed in perfusion units, was larger in trained than in sedentary subjects (younger: 398 +/- 54 vs 350 +/- 87, p < 0.05; older 339 +/- 72 vs 307 +/- 66, p < 0.05). In conclusion, endurance training enhances the vasodilatory effects of nitric oxide in the human dermal microcirculation, at least in forearm skin. These observations have considerable physiologic interest in view of recent data indicating that nitric oxide mediates in part the cutaneous vasodilation induced by heat stress in humans. Therefore, the augmentation of nitric oxide bioactivity in the dermal microcirculation might be one mechanism whereby endurance training modifies the thermoregulatory control of skin blood flow.

PubMed Disclaimer

Publication types

LinkOut - more resources