Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Dec;40(6):643-72.
doi: 10.1080/714037693.

Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes

Affiliations
Review

Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes

Diana M Stafforini et al. Crit Rev Clin Lab Sci. 2003 Dec.

Abstract

Platelet-activating factor (PAF) is a potent proinflammatory phospholipid with diverse pathological and physiological effects. This bioactive phospholipid mediates processes as diverse as wound healing, physiological inflammation, apoptosis, angiogenesis, reproduction and long-term potentiation. Recent progress has demonstrated the participation of MAP kinase signaling pathways as modulators of the two critical enzymes, phospholipase A2 and acetyltransferase, involved in the remodeling pathway of PAF biosynthesis. The unregulated production of structural analogs of PAF by non-specific oxidative reactions has expanded this superfamily of signaling molecules to include "PAF-like" lipids whose mode of action is identical to that of authentic PAF. The action of members of this family is mediated by the PAF receptor, a G protein-coupled membrane-spanning molecule that can engage multiple signaling pathways in various cell types. Inappropriate activation of this signaling pathway is associated with many diseases in which inflammation is thought to be one of the underlying features. Inactivation of all members of the PAF superfamily occurs by a unique class of enzymes, the PAF acetylhydrolases, that have been characterized at the molecular level and that terminate signals initiated by both regulated and unregulated PAF production.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources