Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Oct-Nov;55(10-11):599-603.
doi: 10.1080/15216540310001628681.

Mitochondrial nitric-oxide synthase: role in pathophysiology

Affiliations
Free article
Review

Mitochondrial nitric-oxide synthase: role in pathophysiology

Virginia Haynes et al. IUBMB Life. 2003 Oct-Nov.
Free article

Abstract

The biochemistry of the mitochondrial production of nitric oxide is reviewed to gain insight into the basic role of this radical in mitochondrial and cellular oxidative metabolism. The mitochondrial production of nitric oxide is catalyzed by a nitric-oxide synthase (mtNOS). This enzyme has the same cofactor and substrate requirements as other constitutive nitric-oxide synthases. Its occurrence was demonstrated in various mitochondrial preparations from different organs and species using diverse approaches (oxidation of oxymyoglobin, electron paramagnetic resonance in conjunction with spin trap, radiolabeled L-arginine, immunohistochemistry, nitric-oxide electrode). MtNOS has been identified as the alpha isoform of nNOS, acylated at a Thr or Ser residue, and phosphorylated at the C-terminal end. Endogenous nitric oxide reversibly inhibits oxygen consumption and ATP synthesis by competitive inhibition of cytochrome oxidase. Nitric oxide is the first molecule that fulfills the requirement for a cytochrome oxidase activity modulator: it is a competitive inhibitor, produced endogenously at a fair rate near the target site, at concentrations high enough to exhibit an inhibitory effect on cytochrome oxidase. The role of the mitochondrial nitric oxide production is discussed in terms of the physiological (modulating oxygen gradients into tissues) and pathological (abrogation of oxygen gradient modification, apoptosis, protein nitrative/oxidative stress) implications.

PubMed Disclaimer

Publication types

LinkOut - more resources