Molecular aspects of membrane trafficking in paramecium
- PMID: 14711119
- DOI: 10.1016/s0074-7696(03)32005-4
Molecular aspects of membrane trafficking in paramecium
Abstract
Results achieved in the molecular biology of Paramecium have shed new light on its elaborate membrane trafficking system. Paramecium disposes not only of the standard routes (endoplasmic reticulum --> Golgi --> lysosomes or secretory vesicles; endo- and phagosomes --> lysosomes/digesting vacuoles), but also of some unique features, e.g. and elaborate phagocytic route with the cytoproct and membrane recycling to the cytopharynx, as well as the osmoregulatory system with multiple membrane fusion sites. Exocytosis sites for trichocysts (dense-core secretory vesicles), parasomal sacs (coated pits), and terminal cisternae (early endosomes) display additional regularly arranged predetermined fusion/fission sites, which now can be discussed on a molecular basis. Considering the regular, repetitive arrangements of membrane components, availability of mutants for complementation studies, sensitivity to gene silencing, and so on, Paramecium continues to be a valuable model system for analyzing membrane interactions. This review intends to set a new baseline for ongoing work along these lines.
Similar articles
-
Trichocysts-Paramecium's Projectile-like Secretory Organelles: Reappraisal of their Biogenesis, Composition, Intracellular Transport, and Possible Functions.J Eukaryot Microbiol. 2017 Jan;64(1):106-133. doi: 10.1111/jeu.12332. Epub 2016 Jul 18. J Eukaryot Microbiol. 2017. PMID: 27251227 Review.
-
NSF regulates membrane traffic along multiple pathways in Paramecium.J Cell Sci. 2002 Oct 15;115(Pt 20):3935-46. doi: 10.1242/jcs.00079. J Cell Sci. 2002. PMID: 12244131
-
Membrane recycling and endocytosis in Paramecium confirmed by horseradish peroxidase pulse-chase studies.J Cell Sci. 1980 Oct;45:131-45. doi: 10.1242/jcs.45.1.131. J Cell Sci. 1980. PMID: 7462342
-
Immunolabeling analysis of biosynthetic and degradative pathways of cell surface components (glycocalyx) in Paramecium cells.Eur J Cell Biol. 1999 Jan;78(1):67-77. doi: 10.1016/S0171-9335(99)80008-9. Eur J Cell Biol. 1999. PMID: 10082425
-
Dense-core secretory vesicle docking and exocytotic membrane fusion in Paramecium cells.Biochim Biophys Acta. 2003 Aug 18;1641(2-3):183-93. doi: 10.1016/s0167-4889(03)00092-2. Biochim Biophys Acta. 2003. PMID: 12914959 Review.
Cited by
-
Calcium-release channels in paramecium. Genomic expansion, differential positioning and partial transcriptional elimination.PLoS One. 2011;6(11):e27111. doi: 10.1371/journal.pone.0027111. Epub 2011 Nov 10. PLoS One. 2011. PMID: 22102876 Free PMC article.
-
The V-ATPase in Paramecium: functional specialization by multiple gene isoforms.Pflugers Arch. 2009 Jan;457(3):599-607. doi: 10.1007/s00424-007-0417-x. Epub 2008 Jan 29. Pflugers Arch. 2009. PMID: 18228038 Review.
-
Reduction of meckelin leads to general loss of cilia, ciliary microtubule misalignment and distorted cell surface organization.Cilia. 2014 Jan 31;3(1):2. doi: 10.1186/2046-2530-3-2. Cilia. 2014. PMID: 24484742 Free PMC article.
-
Nested genes CDA12 and CDA13 encode proteins associated with membrane trafficking in the ciliate Tetrahymena thermophila.Eukaryot Cell. 2009 Jun;8(6):899-912. doi: 10.1128/EC.00342-08. Epub 2009 Mar 13. Eukaryot Cell. 2009. PMID: 19286988 Free PMC article.
-
Morphological and molecular characterization of Paramecium (Viridoparamecium nov. subgen.) chlorelligerum Kahl (Ciliophora).J Eukaryot Microbiol. 2012 Nov-Dec;59(6):548-63. doi: 10.1111/j.1550-7408.2012.00638.x. Epub 2012 Jul 24. J Eukaryot Microbiol. 2012. PMID: 22827482 Free PMC article.