Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;30(12):3052-60.
doi: 10.1118/1.1626122.

A phantom study on the positioning accuracy of the Novalis Body system

Affiliations

A phantom study on the positioning accuracy of the Novalis Body system

Hui Yan et al. Med Phys. 2003 Dec.

Abstract

A phantom study was conducted to investigate inherent positioning accuracy of an image-guided patient positioning system-the Novalis Body system for three-dimensional (3-D) conformal radiotherapy. This positioning system consists of two infrared (IR) cameras and one video camera and two kV x-ray imaging devices. The initial patient setup was guided by the IR camera system and the target localization was accomplished using the kV x-ray imaging system. In this study, the IR marker shift and phantom rotation were simulated and their effects on the positioning accuracy were examined by a Rando phantom. The effects of CT slice thickness and treatment sites on the positioning accuracy were tested. In addition, the internal target shift was simulated and its effect on the positioning accuracy was examined by a water tank. With the application of the Novalis Body system, the positioning error of the planned isocenter was significantly reduced. The experimental results with the simulated IR marker shifts indicated that the positioning errors of the planned isocenter were 0.6 +/- 0.3, 0.5 +/- 0.2, and 0.7 +/- 0.2 mm along the lateral, longitudinal, and vertical axes, respectively. The experimental results with the simulated phantom rotations indicated that the positioning errors of the planned isocenter were 0.6 +/- 0.3, 0.7 +/- 0.2, and 0.5 +/- 0.2 mm along the three axes, respectively. The experimental results with the simulated target shifts indicated that the positioning errors of the planned isocenter were 0.6 +/- 0.3, 0.7 +/- 0.2, and 0.5 +/- 0.2 mm along the three axes, respectively. On average, the positioning accuracy of 1 mm for the planned isocenter was achieved using the Novalis Body system.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources