Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003:61:395-418.
doi: 10.1016/s0065-3527(03)61010-9.

Formalin-inactivated whole virus and recombinant subunit flavivirus vaccines

Affiliations
Review

Formalin-inactivated whole virus and recombinant subunit flavivirus vaccines

Kenneth H Eckels et al. Adv Virus Res. 2003.

Abstract

The Flaviviridae is a family of arthropod-borne, enveloped, RNA viruses that contain important human pathogens such as yellow fever (YF), Japanese encephalitis (JE), tick-borne encephalitis (TBE), West Nile (WN), and the dengue (DEN) viruses. Vaccination is the most effective means of disease prevention for these viral infections. A live-attenuated vaccine for YF, and inactivated vaccines for JE and TBE have significantly reduced the incidence of disease for these viruses, while licensed vaccines for DEN and WN are still lacking despite a significant disease burden associated with these infections. This review focuses on inactivated and recombinant subunit vaccines (non-replicating protein vaccines) in various stages of laboratory development and human testing. A purified, inactivated vaccine (PIV) candidate for DEN will soon be evaluated in a phase 1 clinical trial, and a second-generation JE PIV produced using similar technology has advanced to phase 2/3 trials. The inactivated TBE vaccine used successfully in Europe for almost 30 years continues to be improved by additional purification, new stabilizers, an adjuvant, and better immunization schedules. The recent development of an inactivated WN vaccine for domestic animals demonstrates the possibility of producing a similar vaccine for human use. Advances in flavivirus gene expression technology have led to the production of several recombinant subunit antigen vaccine candidates in a variety of expression systems. Some of these vaccines have shown sufficient promise in animal models to be considered as candidates for evaluation in clinical trials. Feasibility of non-replicating flavivirus vaccines has been clearly demonstrated and further development is now warranted.

PubMed Disclaimer

MeSH terms

LinkOut - more resources