Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jan;84(1):41-68.
doi: 10.1152/physrev.00020.2003.

Conus venoms: a rich source of novel ion channel-targeted peptides

Affiliations
Free article
Review

Conus venoms: a rich source of novel ion channel-targeted peptides

Heinrich Terlau et al. Physiol Rev. 2004 Jan.
Free article

Abstract

The cone snails (genus Conus) are venomous marine molluscs that use small, structured peptide toxins (conotoxins) for prey capture, defense, and competitor deterrence. Each of the 500 Conus can express approximately 100 different conotoxins, with little overlap between species. An overwhelming majority of these peptides are probably targeted selectively to a specific ion channel. Because conotoxins discriminate between closely related subtypes of ion channels, they are widely used as pharmacological agents in ion channel research, and several have direct diagnostic and therapeutic potential. Large conotoxin families can comprise hundreds or thousands of different peptides; most families have a corresponding ion channel family target (i.e., omega-conotoxins and Ca channels, alpha-conotoxins and nicotinic receptors). Different conotoxin families may have different ligand binding sites on the same ion channel target (i.e., mu-conotoxins and delta-conotoxins to sites 1 and 6 of Na channels, respectively). The individual peptides in a conotoxin family are typically each selectively targeted to a diverse set of different molecular isoforms within the same ion channel family. This review focuses on the targeting specificity of conotoxins and their differential binding to different states of an ion channel.

PubMed Disclaimer

Publication types

LinkOut - more resources