Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;160(12):1499-506.
doi: 10.1078/0176-1617-01011.

Fluorescence induction of Photosystem II membranes shows the steps till reduction and protonation of the quinone pool

Affiliations

Fluorescence induction of Photosystem II membranes shows the steps till reduction and protonation of the quinone pool

Pedro Heredia et al. J Plant Physiol. 2003 Dec.

Abstract

Chlorophyll fluorescence induction (Chl-F) was investigated in Photosystem II (PSII)-enriched membranes, which predominantly include active (QB reducing) PSII reaction centres (RCs) and lack Photosystem I (PSI). The Chl-F curve of these preparations show a polyphasic rise from F0, the minimal fluorescence, to FP, the maximal fluorescence, with several intermediate transitions. Analyses of these transitions revealed three exponential rise components with lifetimes of 18 ms, 400 ms and 800 ms. The 18 ms component was assigned to the photoaccumulation of reduced QA. The two slowest components, of 400 ms and 800 ms, were assigned to QB reduction (QB- and QB =) and further QB= protonation (till QBH2), respectively. These assignments were based on the observation of specific quenching of the phases by DCMU or by different oxidized, reduced and protonated quinones. The work is done in low light conditions which are saturating to avoid photoinhibition or PSII inactivation effects. The results suggest that the Chl-F curve observed in PSII-enriched membranes can be attributed to the sequential steps till the photoaccumulation (reduction and protonation) of plastoquinone (PQ) by PSII. These results are in good agreement with the molecular models that show a correspondence between Chl-F and PQ reduction steps, like the models that propose and explain the O-J-I-P transients.

PubMed Disclaimer

Publication types

MeSH terms