Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar 26;279(13):12943-50.
doi: 10.1074/jbc.M313245200. Epub 2004 Jan 12.

pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release

Affiliations
Free article

pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release

Christian Appenzeller-Herzog et al. J Biol Chem. .
Free article

Abstract

The recycling mannose lectin ERGIC-53 operates as a transport receptor by mediating efficient endoplasmic reticulum (ER) export of some secretory glycoproteins. Binding of cargo to ERGIC-53 in the ER requires Ca2+. Cargo release occurs in the ERGIC, but the molecular mechanism is unknown. Here we report efficient binding of purified ERGIC-53 to immobilized mannose at pH 7.4, the pH of the ER, but not at slightly lower pH. pH sensitivity of the lectin was more prominent when Ca2+ concentrations were low. A conserved histidine in the center of the carbohydrate recognition domain was required for lectin activity suggesting it may serve as a molecular pH/Ca2+ sensor. Acidification of cells inhibited the association of ERGIC-53 with the known cargo cathepsin Z-related protein and dissociation of this glycoprotein in the ERGIC was impaired by organelle neutralization that did not impair the transport of a control protein. The results elucidate the molecular mechanism underlying reversible lectin/cargo interaction and establish the ERGIC as the earliest low pH site of the secretory pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources